Skip to main content

Advertisement

Log in

Hard template-assisted N, P-doped multifunctional mesoporous carbon for supercapacitors and hydrogen evolution reaction

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nonmetal mesoporous carbon exhibits environment friendliness and low cost, which attract much attention in energy storage and conversion. In this work, a N, P-doped mesoporous carbon (NPMC-T) was synthesized by the SiO2 hard template. The mesoporous structure and high N, P content for NPMC-T are beneficial to expose more active sites and accelerate electron transfer, and contribute to exhibit remarkable electrocatalytic activity for supercapacitors and hydrogen evolution reaction application. NPMC-800 is applied as electrode material for supercapacitors and exhibits high specific capacitance (219 F g−1 at 1 A g−1). Meanwhile, the NPMC-T is used as electrocatalyst for HER and shows the good electrocatalytic performance with small Tafel slope of 52 mV dec−1, low overpotential of 298 mV (10 mA cm−2) than that of most other reported analogous catalysts, and excellent stability (after 2000 cycles). This effective capability of N, P-doped multifunctional mesoporous carbon materials is expected to promote the application in supercapacitors and hydrogen evolution reaction widely.

Graphic abstract

A multifunctional non-metal mesoporous carbon electrocatalysis catalyst NPMC-800 was synthesized by the SiO2 hard template method (BET surface area is 593.1 m2g−1). The mesoporous structure and N, P doping of NPMC-800 exhibited the high specific capacitance of 219 F g−1 at 1 A g−1 for supercapacitors, meanwhile, offered glorious electrocatalytic performance for HER with a low overpotential of 298 mV at 10 mA cm-2 , a small Tafel slope 52 mV dec−1 and the surpassing stability after 2000 cycles under acidic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Yuan YJ, Yu ZT, Chen DQ, Zou ZG (2017) Metal-complex chromophores for solar hydrogen generation. Chem Soc Rev 46(3):603–631. https://doi.org/10.1039/C6CS00436A

    Article  CAS  Google Scholar 

  2. Dresselhaus MS, Thomas IL (2001) Alternative energy technologies. Nature 414(6861):332–337. https://doi.org/10.1038/35104599

    Article  CAS  Google Scholar 

  3. Song J, Xiang J, Mu C, Wang B, Wen F, Su C, Wang C, Liu Z (2017) Facile synthesis and excellent electrochemical performance of CoP nanowire on carbon cloth as bifunctional electrode for hydrogen evolution reaction and supercapacitor. Sci China Mater 60(12):1179–1186. https://doi.org/10.1007/s40843-017-9120-6

    Article  CAS  Google Scholar 

  4. Xing LL, Wu X, Huang KJ (2018) High-performance supercapacitor based on three-dimensional flower-shaped Li4Ti5O12-graphene hybrid and pine needles derived honeycomb carbon. J Colloid Interface Sci 529:171–179. https://doi.org/10.1016/j.jcis.2018.06.007

    Article  CAS  Google Scholar 

  5. Gao F, Qu J, Geng C, Shao G, Wu M (2016) Self-templating synthesis of nitrogen-decorated hierarchical porous carbon from shrimp shell for supercapacitors. J Mater Chem A 4(19):7445–7452. https://doi.org/10.1039/C6TA01314G

    Article  CAS  Google Scholar 

  6. Xing L-L, Zhao G-G, Huang K-J, Wu X (2018) A yolk–shell V2O5 structure assembled from ultrathin nanosheets and coralline-shaped carbon as advanced electrodes for a high-performance asymmetric supercapacitor. Dalton Trans 47(7):2256–2265. https://doi.org/10.1039/C7DT04660J

    Article  CAS  Google Scholar 

  7. Huang CH, Doong RA (2012) Sugarcane bagasse as the scaffold for mass production of hierarchically porous carbon monoliths by surface self-assembly. Microporous Mesoporous Mater 147(1):47–52. https://doi.org/10.1016/j.micromeso.2011.05.027

    Article  CAS  Google Scholar 

  8. Ryoo R, Joo SH, Jun S (1999) Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J Phys Chemy B 103(37):7743–7746. https://doi.org/10.1021/jp991673a

    Article  CAS  Google Scholar 

  9. Liang C, Li Z, Dai S (2008) Mesoporous carbon materials: synthesis and modification. Angewandte Chemie Int Edition 47(20):3696–3717. https://doi.org/10.1002/anie.200702046

    Article  CAS  Google Scholar 

  10. Wang K, Zhang Z, Sun Q, Wang P, Li Y (2020) Durian shell-derived N, O, P-doped activated porous carbon materials and their electrochemical performance in supercapacitor. J Mater Sci. https://doi.org/10.1007/s10853-020-04740-1

    Article  Google Scholar 

  11. Sun HJ, Liu B, Peng TJ, Zhao XL (2018) Nitrogen-doped porous 3D graphene with enhanced supercapacitor properties. J Mater Sci 53(18):13100–13110. https://doi.org/10.1007/s10853-018-2561-4

    Article  CAS  Google Scholar 

  12. Zhai ZB, Huang KJ, Wu X (2018) Superior mixed Co-Cd selenide nanorods for high performance alkaline battery-supercapacitor hybrid energy storage. Nano Energy 47:89–95. https://doi.org/10.1016/j.nanoen.2018.02.059

    Article  CAS  Google Scholar 

  13. Wu X, Zhai ZB, Huang KJ, Ren RR, Wang F (2020) Boosting energy and power performance of aqueous energy storage by engineering ultra-fine metallic VSe2 nanoparticles anchored reduced graphene oxide. J Power Sources 448:227399. https://doi.org/10.1016/j.jpowsour.2019.227399

    Article  CAS  Google Scholar 

  14. Chmiola J, Largeot C, Taberna PL, Simon P, Gogotsi Y (2008) Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory. Angew Chemie Int Edition 47(18):3392–3395. https://doi.org/10.1002/anie.200704894

    Article  CAS  Google Scholar 

  15. Lyu F, Wang Q, Zhu H, Du M, Wang L, Zhang X (2017) A host-guest approach to fabricate metallic cobalt nanoparticles embedded in silk-derived N-doped carbon fibers for efficient hydrogen evolution. Green Energy Environ 2(2):151–159. https://doi.org/10.1016/j.gee.2017.01.007

    Article  Google Scholar 

  16. Naga Mahesh K, Balaji R, Dhathathreyan KS (2016) Palladium nanoparticles as hydrogen evolution reaction (HER) electrocatalyst in electrochemical methanol reformer. Int J Hydrogen Energy 41(1):46–51. https://doi.org/10.1016/j.ijhydene.2015.09.110

    Article  CAS  Google Scholar 

  17. Lu Z, Xu X, Chen Y, Wang X, Sun L, Zhuo K (2020) Nitrogen and sulfur co-doped graphene aerogel with hierarchically porous structure for high-performance supercapacitors. Green Energy Environ 5(1):69–75. https://doi.org/10.1016/j.gee.2019.06.001

    Article  CAS  Google Scholar 

  18. Luo HM, Chen H, Chen YZ, Li P, Zhang JQ, Zhao X (2016) Simple synthesis of porous carbon materials for high-performance supercapacitors. J Appl Electrochem 46(6):703–712. https://doi.org/10.1007/s10800-016-0958-9

    Article  CAS  Google Scholar 

  19. Zheng Y, Jiao Y, Li LH, Xing T, Chen Y, Jaroniec M, Qiao SZ (2014) Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. ACS Nano 8(5):5290–5296. https://doi.org/10.1021/nn501434a

    Article  CAS  Google Scholar 

  20. Yan Y, Xu M, Luo Y, Ma J, Pang H, Xue H (2017) Preparation of N, P co-doped activated carbons derived from honeycomb as an electrode material for supercapacitors. RSC Adv 7(75):47448–47455. https://doi.org/10.1039/C7RA08759D

    Article  CAS  Google Scholar 

  21. Yu X, Zhang M, Chen J, Li Y, Shi G (2016) Nitrogen and sulfur codoped graphite foam as a self-supported metal-free electrocatalytic electrode for water oxidation. Adv Energy Mater 6(2):1501492. https://doi.org/10.1002/aenm.201501492

    Article  CAS  Google Scholar 

  22. Guo J, Wu D, Wang T, Ma Y (2019) P-doped hierarchical porous carbon aerogels derived from phenolic resins for high performance supercapacitor. Appl Surf Sci 475:56–66. https://doi.org/10.1016/j.apsusc.2018.12.095

    Article  CAS  Google Scholar 

  23. Xiao K, Ding L-X, Chen H, Wang S, Lu X, Wang H (2016) Nitrogen-doped porous carbon derived from residuary shaddock peel: a promising and sustainable anode for high energy density asymmetric supercapacitors. J Mater Chem A 4(2):372–378. https://doi.org/10.1039/C5TA08591H

    Article  CAS  Google Scholar 

  24. Zhai Z-B, Huang K-J, Wu X, Hu H, Xu Y, Chai R-M (2019) Metal–organic framework derived small sized metal sulfide nanoparticles anchored on N-doped carbon plates for high-capacity energy storage. Dalton Trans 48(14):4712–4718. https://doi.org/10.1039/C9DT00195F

    Article  CAS  Google Scholar 

  25. Hu C-C, Chang K-H, Lin M-C, Wu Y-T (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Letters 6(12):2690–2695. https://doi.org/10.1021/nl061576a

    Article  CAS  Google Scholar 

  26. Shcherban N, Filonenko S, Yaremov P, Dyadyun V, Bezverkhyy I, Ilyin V (2017) Boron-doped nanoporous carbons as promising materials for supercapacitors and hydrogen storage. J Mater Sci 52(3):1523–1533. https://doi.org/10.1007/s10853-016-0447-x

    Article  CAS  Google Scholar 

  27. Qiao S, Zhao J, Zhang B, Liu C, Li Z, Hu S, Li Q (2019) Micrometer-scale biomass carbon tube matrix auxiliary MoS2 heterojunction for electrocatalytic hydrogen evolution. Int J Hydrogen Energy 44(60):32019–32029. https://doi.org/10.1016/j.ijhydene.2019.10.117

    Article  CAS  Google Scholar 

  28. Tang Y-J, Wang Y, Wang X-L, Li S-L, Huang W, Dong L-Z, Liu C-H, Li Y-F, Lan Y-Q (2016) Molybdenum disulfide/nitrogen-doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution. Adv Energy Mater 6(12):1600116. https://doi.org/10.1002/aenm.201600116

    Article  CAS  Google Scholar 

  29. Tan J, He X, Yin F, Liang X, Chen B, Li G, Yin H (2019) β-Mo2C/N, P-co-doped carbon as highly efficient catalyst for hydrogen evolution reaction. J Mater Sci 54(6):4589–4600. https://doi.org/10.1007/s10853-018-03190-0

    Article  CAS  Google Scholar 

  30. Zhao Y, Zhao J, Li Q, Gu C, Zhang B, Liu C, Li Z, Hu S, Qiao S (2020) Degradation-resistant waste plastics derived carbon supported MoS2 electrocatalyst: high-nitrogen dependent activity for hydrogen evolution reaction. Electrochimica Acta 331:135436. https://doi.org/10.1016/j.electacta.2019.135436

    Article  CAS  Google Scholar 

  31. Chi J-Q, Gao W-K, Lin J-H, Dong B, Yan K-L, Qin J-F, Liu B, Chai Y-M, Liu C-G (2019) N, P dual-doped hollow carbon spheres supported MoS2 hybrid electrocatalyst for enhanced hydrogen evolution reaction. Catal Today 330:259–267. https://doi.org/10.1016/j.cattod.2018.03.003

    Article  CAS  Google Scholar 

  32. Yu J, Guo Y, Miao S, Ni M, Zhou W, Shao Z (2018) Spherical ruthenium disulfide-sulfur-doped graphene composite as an efficient hydrogen evolution electrocatalyst. ACS Appl Mater Interfaces 10(40):34098–34107. https://doi.org/10.1021/acsami.8b08239

    Article  CAS  Google Scholar 

  33. Eftekhari A, Garcia H (2017) The necessity of structural irregularities for the chemical applications of graphene. Mater Today Chem 4:1–16. https://doi.org/10.1016/j.mtchem.2017.02.003

    Article  Google Scholar 

  34. Zhang K, Zhang LL, Zhao XS, Wu J (2010) Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater 22(4):1392–1401. https://doi.org/10.1021/cm902876u

    Article  CAS  Google Scholar 

  35. Subramanian V, Luo C, Stephan AM, Nahm KS, Thomas S, Wei B (2007) Supercapacitors from activated carbon derived from banana fibers. J Phys Chem C 111(20):7527–7531. https://doi.org/10.1021/jp067009t

    Article  CAS  Google Scholar 

  36. Kang W, Lin B, Huang G, Zhang C, Yao Y, Hou W, Xu B, Xing B (2018) Peanut bran derived hierarchical porous carbon for supercapacitor. J Mater Sci Mater Electronics 29(8):6361–6368. https://doi.org/10.1007/s10854-018-8615-1

    Article  CAS  Google Scholar 

  37. Momodu D, Madito M, Barzegar F, Bello A, Khaleed A, Olaniyan O, Dangbegnon J, Manyala N (2017) Activated carbon derived from tree bark biomass with promising material properties for supercapacitors. J Solid State Electrochem 21(3):859–872. https://doi.org/10.1007/s10008-016-3432-z

    Article  CAS  Google Scholar 

  38. Zhao G, Chen C, Yu D, Sun L, Yang C, Zhang H, Sun Y, Besenbacher F, Yu M (2018) One-step production of O–N–S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors. Nano Energy 47:547–555. https://doi.org/10.1016/j.nanoen.2018.03.016

    Article  CAS  Google Scholar 

  39. Xu X, Liu Q, Liang L, Gu H, Zhao Y, Xing X, Zhang X, Hu Y (2020) Well-designed nanosheet-constructed porous CoMoS4 arrays for ultrahigh-performance supercapacitors. Ceram Int 46(4):4878–4888. https://doi.org/10.1016/j.ceramint.2019.10.224

    Article  CAS  Google Scholar 

  40. Xu X, Wei T, Zhang X, Xing X, Liang L, Wang H, Zhao Y (2020) Boosting the energy storage performance of cobalt molybdate microspheres constructed from urotropin-induced ultrathin nanosheets. Int J Energy Res 44(3):2196–2207. https://doi.org/10.1002/er.5080

    Article  CAS  Google Scholar 

  41. Liu B, Liu Y, Chen H, Yang M, Li H (2017) Oxygen and nitrogen co-doped porous carbon nanosheets derived from Perilla frutescens for high volumetric performance supercapacitors. J Power Sources 341:309–317. https://doi.org/10.1016/j.jpowsour.2016.12.022

    Article  CAS  Google Scholar 

  42. Hou J, Cao C, Idrees F, Ma X (2015) Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9(3):2556–2564. https://doi.org/10.1021/nn506394r

    Article  CAS  Google Scholar 

  43. Eftekhari A (2017) From pseudocapacitive redox to intermediary adsorption in oxygen evolution reaction. Mater Today Chem 4:117–132. https://doi.org/10.1016/j.mtchem.2017.03.003

    Article  Google Scholar 

  44. Eftekhari A, Mohamedi M (2017) Tailoring pseudocapacitive materials from a mechanistic perspective. Mater Today Energy 6:211–229. https://doi.org/10.1016/j.mtener.2017.10.009

    Article  Google Scholar 

  45. Gao M, Sheng W, Zhuang Z, Fang Q, Gu S, Jiang J, Yan Y (2014) Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. J Am Chem Soc 136(19):7077–7084. https://doi.org/10.1021/ja502128j

    Article  CAS  Google Scholar 

  46. Youn DH, Han S, Kim JY, Kim JY, Park H, Choi SH, Lee JS (2014) Highly active and stable hydrogen evolution electrocatalysts based on molybdenum compounds on carbon nanotube-graphene hybrid support. ACS Nano 8(5):5164–5173. https://doi.org/10.1021/nn5012144

    Article  CAS  Google Scholar 

  47. Feng J, Zhou H, Wang J, Bian T, Shao J, Yuan A (2018) MoS2 supported on MOF-derived carbon with core-shell structure as efficient electrocatalysts for hydrogen evolution reaction. Int J Hydrogen Energy 43(45):20538–20545. https://doi.org/10.1016/j.ijhydene.2018.09.057

    Article  CAS  Google Scholar 

  48. Wang Z, Gu J, Li S, Zhang GC, Zhong J, Fan X, Yuan D, Tang S, Xiao D (2019) One-step polyoxometalates-assisted synthesis of manganese dioxide for asymmetric supercapacitors with enhanced cycling lifespan. ACS Sustain Chem Eng 7(1):258–264. https://doi.org/10.1021/acssuschemeng.8b03072

    Article  CAS  Google Scholar 

  49. Xiao W, Liu P, Zhang J, Song W, Feng YP, Gao D, Ding J (2017) Dual-functional N dopants in edges and basal plane of MoS2 nanosheets toward efficient and durable hydrogen evolution. Adv Energy Mater 7(7):1602086. https://doi.org/10.1002/aenm.201602086

    Article  CAS  Google Scholar 

  50. Gao Y, Li L, Jin Y, Wang Y, Yuan C, Wei Y, Chen G, Ge J, Lu H (2015) Porous carbon made from rice husk as electrode material for electrochemical double layer capacitor. Appl Energy 153:41–47. https://doi.org/10.1016/j.apenergy.2014.12.070

    Article  CAS  Google Scholar 

  51. Peng H, Zhou J, Sun K, Ma G, Zhang Z, Feng E, Lei Z (2017) High-performance asymmetric supercapacitor designed with a novel NiSe@MoSe2 nanosheet array and nitrogen-doped carbon nanosheet. ACS Sustain Chem Eng 5(7):5951–5963. https://doi.org/10.1021/acssuschemeng.7b00729

    Article  CAS  Google Scholar 

  52. Xu G, Han J, Ding B, Nie P, Pan J, Dou H, Li H, Zhang X (2015) Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chem 17(3):1668–1674. https://doi.org/10.1039/C4GC02185A

    Article  CAS  Google Scholar 

  53. Gao S, Li L, Geng K, Wei X, Zhang S (2015) Recycling the biowaste to produce nitrogen and sulfur self-doped porous carbon as an efficient catalyst for oxygen reduction reaction. Nano Energy 16:408–418. https://doi.org/10.1016/j.nanoen.2015.07.009

    Article  CAS  Google Scholar 

  54. Sun J, Ge Q, Guo L, Yang Z (2020) Nitrogen doped carbon fibers derived from carbonization of electrospun polyacrylonitrile as efficient metal-free HER electrocatalyst. Int J Hydrogen Energy 45(7):4035–4042. https://doi.org/10.1016/j.ijhydene.2019.11.204

    Article  CAS  Google Scholar 

  55. Saravanan KRA, Prabu N, Sasidharan M, Maduraiveeran G (2019) Nitrogen-self doped activated carbon nanosheets derived from peanut shells for enhanced hydrogen evolution reaction. Appl Surf Sci 489:725–733. https://doi.org/10.1016/j.apsusc.2019.06.040

    Article  CAS  Google Scholar 

  56. Liang H-W, Brüller S, Dong R, Zhang J, Feng X, Müllen K (2015) Molecular metal–Nx centres in porous carbon for electrocatalytic hydrogen evolution. Nat Commun 6(1):7992. https://doi.org/10.1038/ncomms8992

    Article  CAS  Google Scholar 

  57. Qu K, Zheng Y, Zhang X, Davey K, Dai S, Qiao SZ (2017) Promotion of electrocatalytic hydrogen evolution reaction on nitrogen-doped carbon nanosheets with secondary heteroatoms. ACS Nano 11(7):7293–7300. https://doi.org/10.1021/acsnano.7b03290

    Article  CAS  Google Scholar 

  58. Zhang B, Wen Z, Ci S, Chen J, He Z (2014) Nitrogen-doped activated carbon as a metal free catalyst for hydrogen production in microbial electrolysis cells. RSC Adv 4(90):49161–49164. https://doi.org/10.1039/C4RA08555H

    Article  CAS  Google Scholar 

  59. Cui W, Liu Q, Cheng N, Asiri AM, Sun X (2014) Activated carbon nanotubes: a highly-active metal-free electrocatalyst for hydrogen evolution reaction. Chem Commun 50(66):9340–9342. https://doi.org/10.1039/C4CC02713B

    Article  CAS  Google Scholar 

  60. Ito Y, Cong W, Fujita T, Tang Z, Chen M (2015) High catalytic activity of nitrogen and sulfur co-doped nanoporous graphene in the hydrogen evolution reaction. Angew Chemie Int Edition 54(7):2131–2136. https://doi.org/10.1002/anie.201410050

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (No. 21805068), Key Research and Development Project of Shijiazhuang (191070323A) and Scientific Research Foundation of Hebei University of Science and Technology (Grant No. 1181268).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyang Xu or Shanlin Qiao.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xusha Dong and Xinwei Liu have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4753 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X., Liu, X., Chen, H. et al. Hard template-assisted N, P-doped multifunctional mesoporous carbon for supercapacitors and hydrogen evolution reaction. J Mater Sci 56, 2385–2398 (2021). https://doi.org/10.1007/s10853-020-05303-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05303-0

Navigation