Skip to main content

Advertisement

Log in

Highly Active RuPd Bimetallic Catalysts for Sodium Borohydride Electrooxidation and Hydrolysis

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In the present study, bimetallic RuPd/carbon nanotube (RuPd/CNT) electrocatalysts were synthesized at different molar ratios by sodium borohydride (NaBH4) reduction. These catalysts were characterized with advanced surface characterization techniques such as x-ray diffraction (XRD), scanning electron microscopy with energy dispersive x-ray (SEM-EDX), and x-ray photoelectron spectroscopy (XPS). The activities of these catalysts towards electrooxidation of NaBH4 and hydrogen production from hydrolysis/methanolysis of NaBH4 were investigated. According to XRD results, the particle sizes of Ru/CNT and Ru60Pd40/CNT catalysts were calculated as 3.16 and 3.05 nm, respectively. The distribution and elemental composition of Ru and Pd nanoparticles on CNT were obtained by SEM-EDX analysis. The XPS method was used to determine the oxidation states of Ru and Pd on the CNT surface. The electrochemical activities of these catalysts were determined by cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) measurements. The results show that the Ru60Pd40/CNT catalyst has the highest current mass activity with 2161.94 mA/mg Ru (12.72 mA/cm2) current density. Consequently, the RuPd/CNT catalyst is a promising anode catalyst for direct borohydride fuel cells (DBFC) with good stability and high activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Lilloja, E. Kibena-Poldsepp, A. Sarapuu, A. Kikas, V. Kisand, M. Kaarik, M. Merisalu, A. Treshchalov, J. Leis, V. Sammelselg, Q.L. Wei, S. Holdcroft, and K. Tammeveski, Appl. Catal. 272, 119012 (2020).

    CAS  Google Scholar 

  2. Y.Q. Wang, B. Li, D. Cui, X.D. Xiang, and W.S. Li, Biosens. Bioelectron. 51, 349 (2014).

    CAS  Google Scholar 

  3. A.L.M. Reddy, N. Rajalakshmi, and S. Ramaprabhu, Carbon 46, 2 (2008).

    CAS  Google Scholar 

  4. H.C. Kazici, S. Yilmaz, T. Sahan, F. Yildiz, O.F. Er, and H. Kivrak, Front. Energy. 14, 578 (2020).

    Google Scholar 

  5. R.G. Akay, K.C. Ata, T. Kadioglu, and C. Celik, Int. J. Hydrogen Energy. 43, 18702 (2018).

    CAS  Google Scholar 

  6. J. Ma, Y. Sahai, and R.G. Buchheit, J. Power Sour. 195, 4709 (2010).

    CAS  Google Scholar 

  7. E. Sanli, B.Z. Uysal, and M.L. Aksu, Int. J. Hydrogen Energy. 33, 2097 (2008).

    CAS  Google Scholar 

  8. L.H. Yi, Y.F. Song, X. Liu, X.Y. Wang, G.S. Zou, P.Y. He, and W. Yi, Int. J. Hydrogen Energy. 36, 15775 (2011).

    CAS  Google Scholar 

  9. G. Behmenyar and A.N. Akin, J. Power Sour. 249, 239 (2014).

    CAS  Google Scholar 

  10. T.H. Oh, Renew. Energy 163, 930 (2021).

    CAS  Google Scholar 

  11. M. Akdemir, T.A. Hansu, A. Caglar, M. Kaya, and H.D. Kivrak, Energy Storage. 1, 1 (2021).

    Google Scholar 

  12. H. N. Abdelhamid, J. Solid State Chem. 297, 122034 (2021).

  13. H.N. Abdelhamid, Energy Fuels. 35, 10322 (2021).

    CAS  Google Scholar 

  14. H.N. Abdelhamid, Appl. Organomet. Chem. (2021). https://doi.org/10.1002/aoc.6319.

    Article  Google Scholar 

  15. R. Ojani, R. Valiollahi and J.B. Raoof, Appl. Surf. Sci. 311, 245 (2014).

    CAS  Google Scholar 

  16. I. Merino-Jimenez, C.P. de Leon, A.A. Shah, and F.C. Walsh, J. Power Sour. 219, 339 (2012).

    CAS  Google Scholar 

  17. F. G. Boyaci San, O. Okur, C. Iyigun Karadag, I. Isik Gulsac, and E. Okumus, (Ieee Publishing Ieee Xplore, 2014), https://ieeexplore.ieee.org/document/6713082. Accessed 04 April 2021.

  18. L.B. Wang, C.A. Ma, and X.B. Mao, J. Alloys Compd. 397, 313 (2005).

    CAS  Google Scholar 

  19. R.C.P. Oliveira, M. Vasic, D.M.F. Santos, B. Babic, R. Hercigonja, C.A.C. Sequeira, and B. Sljukic, Electrochim. Acta. 269, 517 (2018).

    CAS  Google Scholar 

  20. R. Ghasemi, B.K. Moghadas, and I. Mohammadi, Int. J. Hydrogen Energy. 45, 21808 (2020).

    CAS  Google Scholar 

  21. M. Zhiani and I. Mohammadi, Fuel 166, 517 (2016).

    CAS  Google Scholar 

  22. M. Martins, O. Metin, M. Sevim, B. Sljukic, C.A.C. Sequeira, T. Sener, and D.M.F. Santos, Int. J. Hydrogen Energy. 43, 10686 (2018).

    CAS  Google Scholar 

  23. L. Ma, H. He, A. Hsu, and R.R. Chen, J. Power Sour. 241, 696 (2013).

    CAS  Google Scholar 

  24. Z.P. Xiong, H. Xu, S.M. Li, Z.L. Gu, B. Yan, J. Guo, and Y.K. Du, Appl. Surf. Sci. 427, 83 (2018).

    CAS  Google Scholar 

  25. S. Carrion-Satorre, M. Montiel, R. Escudero-Cid, J.L.G. Fierro, E. Fatas, and P. Ocon, J. Hydrogen Energy. 41, 8954 (2016).

    CAS  Google Scholar 

  26. H. Xu, P.P. Song, B. Yan, J. Wang, F. Gao, Y.P. Zhang, and Y.K. Du, J. Electroanal. Chem. 814, 31 (2018).

    CAS  Google Scholar 

  27. C. Huang, X. Yang, H. Yang, P.Y. Huang, H.Y. Song, and S.J. Liao, Appl. Surf. Sci. 315, 138 (2014).

    CAS  Google Scholar 

  28. T.A. Hansu, O. Sahin, A. Caglar, and H.D. Kivrak, Int. J. Energy Res. 45, 6054 (2021).

    Google Scholar 

  29. T.A. Hansu, O. Sahin, A. Caglar, and H. Kivrak, React. Kinet. Mech. Catal. 131, 661 (2020).

    Google Scholar 

  30. H.N. Abdelhamid, Int. J. Hydrogen Energy. 46, 726 (2021).

    CAS  Google Scholar 

  31. A. Kaur, G. Kaur, P.P. Singh, and S. Kaushal, Int. J. Hydrogen Energy. 46, 15820 (2021).

    CAS  Google Scholar 

  32. W. Tokarz, G. Lota, E. Frackowiak, A. Czerwinski, and P. Piela, Electrochim. Acta. 98, 94 (2013).

    CAS  Google Scholar 

  33. T.A. Hansu, A. Caglar, O. Sahin, and H. Kivrak, Mater. Chem. Phys. 239, 122031 (2020).

    CAS  Google Scholar 

  34. T.A. Hansu, A. Caglar, O. Sahin, and H. Kivrak, Int. J. Ecosyst. Ecol. Sci. 10, 389 (2020).

    Google Scholar 

  35. A. Uzundurukan, E.S. Akca, Y. Budak, and Y. Devrim, Renew. Energy 172, 1351 (2021).

    CAS  Google Scholar 

  36. C.C. Huang, Y.L. Liu, W.H. Pan, C.M. Chang, C.M. Shih, H.Y. Chu, C.H. Chien, C.H. Juan, and S.J. Lue, J. Polym. Sci., Part B: Polym. Phys. 51, 1779 (2013).

    CAS  Google Scholar 

  37. Y.P. Zhou, S. Li, Y.Z. Chen, and Y.N. Liu, J. Power Sour. 351, 79 (2017).

    CAS  Google Scholar 

  38. B. Ulas, D. Alpaslan, Y. Yilmaz, T.E. Dudu, O.F. Er, and H. Kivrak, Surf. Interfaces. 23, 100999 (2021).

    CAS  Google Scholar 

  39. M.G. Hosseini and R. Mahmoodi, J. Power Sour. 370, 87 (2017).

    CAS  Google Scholar 

  40. J.Q. Yang, B.H. Liu, and S. Wu, J. Power Sour. 194, 824 (2009).

    CAS  Google Scholar 

  41. T.H. Oh, B. Jang, and S. Kwon, Int. J. Hydrogen Energy. 39, 6977 (2014).

    CAS  Google Scholar 

  42. D.H. Duan, Q. Wang, H.H. Liu, X. You, S.B. Liu, and Y.F. Wang, J. Solid State Electrochem. 20, 2699 (2016).

    CAS  Google Scholar 

  43. D.H. Duan, H.H. Liu, Q. Wang, Y.F. Wang, and S.B. Liu, Electrochim. Acta. 198, 212 (2016).

    CAS  Google Scholar 

  44. P.Y. He, X.Y. Wang, Y.J. Liu, X. Liu, and L.H. Yi, Int. J. Hydrogen Energy. 37, 11984 (2012).

    CAS  Google Scholar 

  45. H. Kivrak, O. Alal, and D. Atbas, Electrochim. Acta. 176, 497 (2015).

    CAS  Google Scholar 

  46. Z. Zhao, C. Meng, P. Li, W. Zhu, Q. Wang, Y. Ma, G. Shen, L. Bai, H. He, and D. He, Nanoscale 6, 10370 (2014).

    CAS  Google Scholar 

  47. S. Harish, S. Baranton, C. Coutanceau, and J. Joseph, J. Power Sour. 214, 33 (2012).

    CAS  Google Scholar 

  48. J.G. de la Fuente, F. Pérez-Alonso, M. Martínez-Huerta, M. Peña, J. Fierro, and S. Rojas, Catal. Today. 143, 69 (2009).

    Google Scholar 

  49. N. Chen, D. Deng, Y. Li, X. Liu, X. Xing, X. Xiao, and Y. Wang, Sci. Rep. 7, 7692 (2017).

    Google Scholar 

  50. H. Chen, G. Wei, A. Ispas, S.G. Hickey, and A. Eychmüller, J. Phys. Chem. C. 114, 21976 (2010).

    CAS  Google Scholar 

  51. J. Lin, T. Mei, M. Lv, C. Zhang, Z. Zhao, and X. Wang, RSC Adv. 4, 29563 (2014).

    CAS  Google Scholar 

  52. A. Bishnoi, S. Kumar, and N. Joshi, Microscopy Methods in Nanomaterials Characterization, 1st ed., (Amsterdam: Elsevier, 2017), p. 313.

    Google Scholar 

  53. H.K. Hassan, N.F. Atta, M.M. Hamed, A. Galal, and T. Jacob, RSC Adv. 7, 11286 (2017).

    CAS  Google Scholar 

  54. G. Lan, Y. Zhou, H. Shen, H. Tang, and Y. Li, Chin. J. Catal. 39, 146 (2018).

    CAS  Google Scholar 

  55. O.F. Er, A. Caglar, B. Ulas, H. Kivrak, and A. Kivrak, Mater. Chem. Phys. 241, 122422 (2020).

    CAS  Google Scholar 

  56. B. Qi, L. Di, W. Xu, and X. Zhang, J. Mater. Chem. A. 2, 11885 (2014).

    CAS  Google Scholar 

  57. X. Wang, P. Yang, Q. Feng, T. Meng, J. Wei, C. Xu, and J. Han, Polymers 11, 616 (2019).

    Google Scholar 

  58. M.G. Hosseini, M. Abdolmaleki, and F. Nasirpouri, Electrochim. Acta. 114, 215 (2013).

    CAS  Google Scholar 

  59. E.A. Monyoncho, S. Ntais, F. Soares, T.K. Woo, and E.A. Baranova, J. Power Sour. 287, 139 (2015).

    CAS  Google Scholar 

  60. B.P. Li, C.Y. Song, D.M. Zhang, K. Ye, K. Cheng, K. Zhu, J. Yan, D.X. Cao, and G.L. Wang, Carbon 152, 77 (2019).

    CAS  Google Scholar 

  61. M.G. Hosseini and M. Abdolmaleki, Int. J. Hydrogen Energy. 38, 5449 (2013).

    CAS  Google Scholar 

  62. M.S. Guo, Y. Cheng, Y.A. Yu, and J.B. Hu, Appl. Surf. Sci. 416, 439 (2017).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilal Kivrak.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya, S., Yilmaz, Y., Er, O.F. et al. Highly Active RuPd Bimetallic Catalysts for Sodium Borohydride Electrooxidation and Hydrolysis. J. Electron. Mater. 51, 403–411 (2022). https://doi.org/10.1007/s11664-021-09306-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09306-8

Keywords

Navigation