Skip to main content
Log in

The Effects of Polarization-Modulated Quaternary AlInGaN Barriers in Deep-UV-LED

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, the effects of a polarization-modulated quaternary AlInGaN quantum barrier on carrier capture capability and the overlap rate of wave functions in deep-ultraviolet light-emitting diodes (DUV-LEDs) are numerically investigated. By controlling the band bending degree by adjusting polarization intensity (ΔP) in the active region, the band bending is alleviated, and electrons and holes move from both sides of the quantum well to the center, which increases the overlap rate of wave functions and enhances the light output power of DUV-LEDs. Also, there is a limitation on improving the performance of DUV-LEDs by reducing the polarization intensity. This is because the reduced polarization intensity (ΔP) flattens the energy band, reduces the two-dimensional electron gas (2DEG) concentration at the quantum well/quantum barrier (QW/QB) interface, and decreases the effective barrier height. The lower effective barrier height reduces the capability of carrier confinement and carrier concentration in the active region, resulting in the imbalance between the wave function and the carrier concentration, which limits further enhancement of the performance of DUV-LEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. Y. Nagasawa and A. Hirano, Appl. Sci. 8, 1264 (2018).

    Article  Google Scholar 

  2. H. Amano, R. Collazo, C.D. Santi, S. Einfeldt, M.A.S. Dunato, J. Glaab, S. Hagedorn, A. Hirano, H. Hirayama, R. Ishii, Y. Kashima, Y. Kawakami, R. Kirste, M. Kneissl, R. Martin, F. Mehnke, M. Meneghini, A. Ougazzaden, P.J. Parbrook, S. Rajan, P. Reddy, F. Römer, J. Ruschel, B. Sarkar, F. Scholz, L.J. Schowalter, P. Shields, Z. Sitar, L. Sulmoni, T. Wang, T. Wernicke, M. Weyers, B. Witzigmann, Y.-R. Wu, T. Wunderer, and Y. Zhang, J. Phys. D Appl. Phys. 53, 503001 (2020).

    Article  CAS  Google Scholar 

  3. J. Chen, S. Loeb, and J.-H. Kim, Environ. Sci. Water Res. Technol. 3, 188–202 (2017).

    Article  CAS  Google Scholar 

  4. C. Huang, H. Zhang, and H. Sun, Nano Energy 77, 105149 (2020).

    Article  CAS  Google Scholar 

  5. S. Ahmad, M.A. Raushan, S. Kumar, S. Dalela, M.J. Siddiqui, and P.A. Alvi, Optik 158, 1334–1341 (2018).

    Article  CAS  Google Scholar 

  6. H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, Jpn. J. Appl. Phys. 53, 100209 (2014).

    Article  Google Scholar 

  7. M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N.M. Johnson, and M. Weyers, Semicond. Sci. Technol. 26, 014036 (2011).

    Article  Google Scholar 

  8. N. Susilo, S. Hagedorn, D. Jaeger, H. Miyake, U. Zeimer, C. Reich, B. Neuschulz, L. Sulmoni, M. Guttmann, F. Mehnke, C. Kuhn, T. Wernicke, M. Weyers, and M. Kneissl, Appl. Phys. Lett. 112, 041110 (2018).

    Article  Google Scholar 

  9. J.Y. Tsao, S. Chowdhury, M.A. Hollis, D. Jena, N.M. Johnson, K.A. Jones, R.J. Kaplar, S. Rajan, C.G. Van de Walle, E. Bellotti, C.L. Chua, R. Collazo, M.E. Coltrin, J.A. Cooper, K.R. Evans, S. Graham, T.A. Grotjohn, E.R. Heller, M. Higashiwaki, M.S. Islam, P.W. Juodawlkis, M.A. Khan, A.D. Koehler, J.H. Leach, U.K. Mishra, R.J. Nemanich, R.C.N. Pilawa-Podgurski, J.B. Shealy, Z. Sitar, M.J. Tadjer, A.F. Witulski, M. Wraback, and J.A. Simmons, Adv. Electron. Mater. 4, 1600501 (2018).

    Article  Google Scholar 

  10. C. Chu, K. Tian, Y. Zhang, W. Bi, and Z.-H. Zhang, Phys. Status Solidi A 216, 1800815 (2019).

    Article  Google Scholar 

  11. Z. Ren, H. Yu, Z. Liu, D. Wang, C. Xing, H. Zhang, C. Huang, S. Long, and H. Sun, J. Phys. D Appl. Phys. 53, 073002 (2020).

    Article  CAS  Google Scholar 

  12. M. Kneissl, T.-Y. Seong, J. Han, and H. Amano, Nat. Photonics 13, 233–244 (2019).

    Article  CAS  Google Scholar 

  13. H. Sun, S. Mitra, R.C. Subedi, Y. Zhang, W. Guo, J. Ye, M.K. Shakfa, T.K. Ng, B.S. Ooi, I.S. Roqan, Z. Zhang, J. Dai, C. Chen, and S. Long, Adv. Funct. Mater. 29, 1905445 (2019).

    Article  CAS  Google Scholar 

  14. R.M. Farrell, E.C. Young, F. Wu, S.P. DenBaars, and J.S. Speck, Semicond. Sci. Technol. 27, 024001 (2012).

    Article  Google Scholar 

  15. M.-H. Kim, M.F. Schubert, Q. Dai, J.K. Kim, E.F. Schubert, J. Piprek, and Y. Park, Appl. Phys. Lett. 91, 183507 (2007).

    Article  Google Scholar 

  16. Z. Ren, Y. Lu, H.-H. Yao, H. Sun, C.-H. Liao, J. Dai, C. Chen, J.-H. Ryou, J. Yan, J. Wang, J. Li, and X. Li, IEEE Photonics J. 11, 1 (2019).

    CAS  Google Scholar 

  17. Y.-H. Lu, Y.-K. Fu, S.-J. Huang, Y.-K. Su, K.L. Wang, M.H. Pilkuhn, and M.-T. Chu, J. Appl. Phys. 115, 113102 (2014).

    Article  Google Scholar 

  18. D. Wang, Y. Yin, and X. Chen, J. Electron. Mater. 48, 4330–4334 (2019).

    Article  CAS  Google Scholar 

  19. H. Hirayama, Y. Tsukada, T. Maeda, and N. Kamata, Appl. Phys. Express. 3, 031002 (2010).

    Article  Google Scholar 

  20. Z. Zhuang, D. Iida, and K. Ohkawa, Opt. Express. 28, 30423 (2020).

    Article  CAS  Google Scholar 

  21. R.K. Mondal, V. Chatterjee, and S. Pal, Opt. Mater. 104, 109846 (2020).

    Article  CAS  Google Scholar 

  22. H. Gupta, S. Ahmad, S. Kattayat, D. Kumar, S. Dalela, M.J. Siddiqui, and P.A. Alvi, Superlattices Microstruct. 142, 106543 (2020).

    Article  CAS  Google Scholar 

  23. Y. Hou, Z. Guo, Y. Liu, M. Guo, J. Huang, S. Yao, X. Zhang, X. Gong, and Z. Xu, Superlattices Microstruct. 107, 278–284 (2017).

    Article  CAS  Google Scholar 

  24. Y.-A. Chang, Y.-R. Lin, J.-Y. Chang, T.-H. Wang, and Y.-K. Kuo, IEEE J. Quantum Electron. 49, 553–559 (2013).

    Article  CAS  Google Scholar 

  25. H. Hirayama, J. Appl. Phys. 97, 091101 (2005).

    Article  Google Scholar 

  26. Y.-K. Kuo, Y.-H. Chen, J.-Y. Chang, and M.-C. Tsai, Appl. Phys. Lett. 100, 043513 (2012).

    Article  Google Scholar 

  27. X. Chen, Y. Yin, D. Wang, and G. Fan, J. Electron. Mater. 48, 2572–2576 (2019).

    Article  CAS  Google Scholar 

  28. M. Usman, S. Malik, M. Hussain, H. Jamal, and M.A. Khan, Opt. Mater. 112, 110745 (2021).

    Article  CAS  Google Scholar 

  29. K. Li, N. Zeng, F. Liao, and Y. Yin, Superlattices Microstruct. 145, 106601 (2020).

    Article  CAS  Google Scholar 

  30. C.S. Xia, Z.M. Simon Li, Z.Q. Li, and Y. Sheng, Appl. Phys. Lett. 102, 013507 (2013).

    Article  Google Scholar 

  31. L. Zhang, K. Ding, N.X. Liu, T.B. Wei, X.L. Ji, P. Ma, J.C. Yan, J.X. Wang, Y.P. Zeng, and J.M. Li, Appl. Phys. Lett. 98, 101110 (2011).

    Article  Google Scholar 

  32. H. Hirayama (2010). Advances of AlGaN-based high-efficiency deep-UV LEDs, in Asia Communications and Photonics Conference and Exhibition (2010), pp. 641–642.

  33. F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B. 56, 10024–10027 (1997).

    Article  Google Scholar 

  34. V. Fiorentini, F. Bernardini, and O. Ambacher, Appl. Phys. Lett. 80, 1204–1206 (2002).

    Article  CAS  Google Scholar 

  35. E.T. Yu, X.Z. Dang, P.M. Asbeck, S.S. Lau, and G.J. Sullivan, J. Vac. Sci. Technol. B 17, 1742–1749 (1999).

    Article  CAS  Google Scholar 

  36. J. Lang, F.J. Xu, W.K. Ge, B.Y. Liu, N. Zhang, Y.H. Sun, M.X. Wang, N. Xie, X.Z. Fang, X.N. Kang, Z.X. Qin, X.L. Yang, X.Q. Wang, and B. Shen, Appl. Phys. Lett. 114, 172105 (2019).

    Article  Google Scholar 

  37. H. Yu, Q. Chen, Z. Ren, M. Tian, S. Long, J. Dai, C. Chen, and H. Sun, IEEE Photonics J. 11, 1 (2019).

    Google Scholar 

Download references

Acknowledgments

The work was supported by the Guangdong Science and Technology Plan Project (Grant No. 2019B010130001) and the Shenzhen Science and Technology Plan Project (Grant No. GJHZ20180416164721073)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-An Yin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, F., Zhang, K., Zeng, N. et al. The Effects of Polarization-Modulated Quaternary AlInGaN Barriers in Deep-UV-LED. J. Electron. Mater. 51, 126–132 (2022). https://doi.org/10.1007/s11664-021-09272-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09272-1

Keywords

Navigation