Skip to main content
Log in

Study of GaN-Based Superjunction CAVET with Dipole Layer to Further Improve On-Resistance and Breakdown Voltage

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We propose a GaN-based superjunction current-aperture vertical electron transistor (CAVET) with a dipole layer (DL-SJ CAVET) and demonstrated two-dimensional numerical simulations by Silvaco-Atlas. The dipole layer (DL) formed by Al0.1Ga0.9N is attached to the Al0.15Ga0.85N barrier layer and located in the passivation layer between the source and the gate electrodes. The simulated results of the proposed device exhibit high breakdown voltage (BV) and low specific on-resistance (RonA).The BV can reach 2453 V and the RonA reach 2.23 mΩ·cm2.Compared with the conventional GaN SJ CAVET, the improvement of RonA and BV can realized in DL-SJ CAVET based on the special structure features. To improve the RonA, we proposed a novel DL-SJ CAVET with step-doping p-pillars and n-pillars (DS-SJ CAVET). Compared with DL-SJ CAVET under the same aspect ratio, DS-SJ CAVET can further decrease RonA by increasing differently doped layers in p-pillars and n-pillars. The RonA reaches 1.76 mΩ·cm2 while BV reaches 2640 V. Further reduction in RonA can be achieved by adding differently doped layers and differently doped concentrations in n-pillars and p-pillars with decreasing BV. The proposed devices can be fabricated by selective area growth (SAG) technology and it shows significant potential in microwave power applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B.J. Baliga, Gallium nitride devices for power electronic applications. Semicond. Sci. Technol. 28, 074011 (2013).

    Article  Google Scholar 

  2. S. Chowdhury, B.L. Swenson, M.H. Wong, and K. Mishra, Current status and scope of gallium nitride-based vertical transistors for high-power electronics application. Semicond. Sci. Technol. 28, 074014 (2013).

    Article  Google Scholar 

  3. Y. Zhang, M. Sun, Z. Liu, and D. Piedra, Electrothermal simulation and thermal performance study of GaN vertical and lateral power transistors. IEEE Trans. Electron Devices 60, 2224 (2013).

    Article  CAS  Google Scholar 

  4. O. Ambacher, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, W.J. Schaff, L.F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Eieger, and J. Hilsenbeck, Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 85, 3222 (1999).

    Article  CAS  Google Scholar 

  5. D. Ji, M.A. Laurent, A. Agarwal, W. Li, S. Mandal, S. Keller, and S. Chowdhury, Normally OFF trench CAVET with active Mg-doped GaN as current blocking layer. IEEE Trans. Electron Devices 64, 805 (2017).

    Article  CAS  Google Scholar 

  6. D. Shibata, R. Kajitani, M. Ogawa, K. Tanaka, S. Tamura, T. Hatsuda, M. Ishida, and T. Ueda, 1.7 kV/1.0 mΩ·cm2 Normally-off vertical GaN transistor on GaN substrate with regrown p-GaN/AlGaN/GaN semipolar gate structure, in 2016 IEEE International Electron Devices Meeting, p. 10.1.1 (2016).

  7. R. Yeluri, J. Lu, C.A. Hurni, D.A. Browne, S. Chowdhury, S. Keller, J.S. Speck, and U.K. Mishra, Design, fabrication, and performance analysis of GaN vertical electron transistors with a buried p/n junction. Appl. Phys. Lett. 106, 183502 (2015).

    Article  Google Scholar 

  8. Z. Li, and T.P. Chow, Design and simulation of 5–20-kV GaN enhancement-mode vertical superjunction HEMT. IEEE Trans. Electron Devices 60, 3230 (2013).

    Article  CAS  Google Scholar 

  9. Z. Li, and T.P. Chow, Design and simulation of novel enhancement mode 5–20 kV GaN vertical superjunction high electron mobility transistors for smart grid applications. Jpn. J. Appl. Phys. 52, 279 (2013).

    Google Scholar 

  10. W. Mao, H. Wang, P. Shi, X. Wang, M. Du, X. Zheng, C. Wang, X. Ma, J. Zhang, and Y. Hao, Low specific on-resistance GaN-based vertical heterostructure field effect transistors with nonuniform doping superjunctions. Chin. Phys. B 27, 430 (2018).

    Google Scholar 

  11. W. Mao, H. Wang, P. Shi, C. Yang, Y. Zhang, X. Zheng, C. Wang, J. Zhang, and Y. Hao, Study of GaN-based step-doping superjunction CAVET for further improvement of breakdown voltage and specificon-resistance. Semicond. Sci. Technol. 33, 025005 (2018).

    Article  Google Scholar 

  12. T. Masuda, R. Kosugi, and T. Hiyoshi, 0.97 mΩ·cm2/820 V 4H–SiC super junction V-Groove trench MOSFET. Mater. Sci. Forum 897, 483–488 (2017).

    Article  Google Scholar 

  13. E.A. Douglas, B. Klein, A.A. Allerman, A.G. Baca, T. Fortune, and A.M. Armstrong, Enhancement-mode AlGaN channel high electron mobility transistor enabled by p-AlGaN gate. J. Vac. Sci. Technol. B 37, 021208 (2019).

    Article  Google Scholar 

  14. J.F. Du, X.Y. Li, Z.Y. Bai, Y. Liu, and Q. Yu, High breakdown voltage AlGaN/GaN HEMTs with a dipole layer for microwave power applications. Micro Nano Lett. 14, 488 (2019).

    Article  CAS  Google Scholar 

  15. C. Zhu, X. Zhou, Z. Feng, Z. Zhao, Z. Wei, and Z. Zhao, Theoretical investigation of high-voltage superjunction GaN-based vertical heterojunction field effect transistor with ununiformly doped buffer to suppress charge imbalance effect. Superlattices Microstruct. 34, 065012 (2015).

    Google Scholar 

  16. Y. Ma, M. Xiao, R. Zhang, H. Wang, and Y. Zhang, Superjunction power transistors with interface charges: a case study for GaN. IEEE J. Electron Devices 8, 42 (2020).

    Article  CAS  Google Scholar 

  17. J. Du, D. Liu, Z. Zhao, Z. Bai, L. Li, J. Mo, and Q. Yu, Design of high breakdown voltage GaN vertical HFETs with p-GaN buried buffer layers for power switching applications. Semicond. Sci. Tech. 83, 251 (2015).

    CAS  Google Scholar 

  18. J. Du, Y. Liu, J. Mo, Z. Zhao, S. Huang, Y. Liu, and Q. Yu, Design and simulation of a nanoscale GaN-based vertical HFET with pnp-superjunction buffer structure. Nanosci. Nanotechnol. Lett. 7, 100 (2015).

    Article  Google Scholar 

  19. J. Du, D. Liu, Z. Bai, Y. Liu, and Q. Yu, Design of high breakdown voltage GaN-based vertical HFETs with p-GaN island structure for power applications. Superlattices Microstruct. 85, 690 (2015).

    Article  CAS  Google Scholar 

  20. F. Udrea, G. Deboy, and T. Fujihira, Superjunction power devices, history, development, and future prospects. IEEE Trans. Electron Devices 64, 713 (2017).

    Article  CAS  Google Scholar 

  21. S. Chowdhury, M.H. Wong, B.L. Swenson, and U.K. Mishra, CAVET on bulk GaN substrates achieved with MBE-Regrown AlGaN/GaN layers to suppress dispersion. IEEE Electron Device Lett. 33, 41 (2011).

    Article  Google Scholar 

  22. R. Kosugi, Y. Sakuma, K. Kojima, S. Itoh, A. Nagata, T. Yatsuo, Y. Tanaka, and H. Okumura, First experimental demonstration of SiC super-junction (SJ) structure by multi-epitaxial growth method, in Proceedings of the 26th International Symposium on Power Semiconductor Devices & IC's, p. 346 (2014)

  23. M. Marso, P. Javorka, Y. Dikme, H. Kalisch, J. Bernat, C. Schfer, B. Schineller, A.V.D. Hart, M. Wolter, A. Fox, R.H. Jansen, M. Heuken, P. Kordos, and H. Luth, Influence of doping concentration on DC and RF performance of AlGaN/GaN HEMTs on silicon substrate. Phys. Stat. Sol. 200, 179 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Key-Area Research and Development of Guangdong Province (2019B010128002, 2020B010171002), Foshan Science and Technology Bureau (1920001000724), Guangdong Science and Technology Project (Grant 2019KTSCX084), and Guangzhou Science and Technology Program Key Projects (201807010083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyou Guo.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Guo, Z., Sun, H. et al. Study of GaN-Based Superjunction CAVET with Dipole Layer to Further Improve On-Resistance and Breakdown Voltage. J. Electron. Mater. 51, 110–118 (2022). https://doi.org/10.1007/s11664-021-09267-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09267-y

Keywords

Navigation