Skip to main content
Log in

Humidity Sensing Properties of Hierarchical Fe Doped SnO2 Nanocoral-Like Structures

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Present technical paper investigates the humidity sensing properties of Fe doped SnO2 nanocoral (FSNC)-like structures which were achieved by hydrothermal synthesis. The structural properties of FSNC samples were characterized using field emission scanning electron microscopy (Hitachi S–4800), energy-dispersive x-ray spectroscopy and x-ray diffraction (Rigaku Miniflex). FSNC with rod-, spherical-, and rod-shaped tentacles have been achieved using autoclave reactors of size 100 ml, 250 ml and 500 ml, respectively. The average crystallite size of FSNC with rod-, spherical-, and rod-shaped tentacles have been found to be ~ 6.51 nm, 7.26 nm and 4.93 nm, respectively. The sensing properties of the FSNC sensors have been established in a humidity chamber for a range of 20–80% relative humidity. The response/recovery time of sensors for FSNC with rod-, spherical-, and rod-shaped tentacles have been found to be 18/32 s, 25/40 s, and 20/30 s, respectively. The highest sensitivity has been achieved for FSNC with rod-shaped tentacles. The humidity sensing properties of FSNC sensors, such as response/recovery time, stability, hysteresis, and sensitivity have been investigated in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Rauf, M. Vijjapu, M. Andres, I. Gascon, O. Roubeau, M. Eddaoudi, K. Salama, and A.C.S. Appl, Mater. Inter. 12, 29999 (2020).

    Article  CAS  Google Scholar 

  2. Y. Wang, L. Zhang, Z. Zhang, P. Sun, and H. Chen, Langmuir 36, 9443 (2020).

    Article  CAS  Google Scholar 

  3. H. Farahani, R. Wagiran, and M. Hamidon, Sensors 14, 7881 (2014).

    Article  Google Scholar 

  4. T. Blank, L. Eksperiandova, and K. Belikov, Sens. Actuat. B Chem. 228, 416 (2016).

    Article  CAS  Google Scholar 

  5. Z. Chen, and C. Lu, Sens. Lett. 3, 274 (2005).

    Article  CAS  Google Scholar 

  6. Q. Qi, T. Zhang, Q. Yu, R. Wang, Y. Zeng, L. Liu, and H. Yang, Sens. Actuat. B Chem. 133, 638 (2008).

    Article  CAS  Google Scholar 

  7. Y. Tang, Z. Li, J. Ma, L. Wang, J. Yang, B. Du, Q. Yu, and X. Zu, Sens. Actuat. B Chem. 215, 283 (2015).

    Article  CAS  Google Scholar 

  8. W. Xie, B. Liu, S. Xiao, H. Li, Y. Wang, D. Cai, D. Wang, L. Wang, Y. Liu, Q. Li, and T. Wang, Sens. Actuat. B Chem. 215, 125 (2015).

    Article  CAS  Google Scholar 

  9. A. Manut, A. Zoolfakar, M. Mamat, N. Ab Ghani, and M. Zolkapli in IEEE International Conference on Semiconductor Electronics (ICSE) (2020).

  10. N. Parimon, M. Mamat, I. Shameem Banu, N. Vasimalai, M. Ahmad, A. Suriani, A. Mohamed, and M. Rusop, J. Mater. Sci. Mater. Electron. 31, 11673 (2020).

    Article  CAS  Google Scholar 

  11. Q. Kuang, C. Lao, Z. Wang, Z. Xie, and L. Zheng, J. Am. Chem. 129, 6070 (2007).

    Article  CAS  Google Scholar 

  12. T. Krishnakumar, R. Jayaprakash, V. Singh, B. Mehta, and A. Phani, J. Nano Res. 4, 91 (2009).

    Article  Google Scholar 

  13. M. Parthibavarman, V. Hariharan, and C. Sekar, Mater. Sci. Eng. C 31, 840 (2011).

    Article  CAS  Google Scholar 

  14. W. Li, J. Liu, C. Ding, G. Bai, J. Xu, Q. Ren, and J. Li, Sensors 17, 2392 (2017).

    Article  Google Scholar 

  15. P. Kumar, S. Khadtare, J. Park, and B. Yadav, Mater. Lett. 278, 128451 (2020).

    Article  CAS  Google Scholar 

  16. N. Gao, H. Li, W. Zhang, Y. Zhang, Y. Zeng, H. Zhixiang, J. Liu, J. Jiang, L. Miao, F. Yi, and H. Liu, Sens. Actuat. B Chem. 293, 129 (2019).

    Article  CAS  Google Scholar 

  17. M. Sabarilakshmi, and K. Janaki, J. Mater. Sci. Mater. Electron. 28, 5329 (2016).

    Article  Google Scholar 

  18. D. Zhang, Y. Sun, P. Li, Y. Zhang, and A.C.S. Appl, Mater. Inter. 8, 14142 (2016).

    Article  CAS  Google Scholar 

  19. M. Sabarilakshmi, and K. Janaki, J. Mater. Sci. 28, 8101 (2017).

    CAS  Google Scholar 

  20. Y. Chen, Y. Pei, Z. Jiang, Z. Shi, J. Xu, D. Wu, T. Xu, Y. Tian, X. Wang, and X. Li, Appl. Surf. Sci. 447, 325 (2018).

    Article  CAS  Google Scholar 

  21. R. Bakiya Lakshmi, and A. Vimala Juliet, J. Mater. Res. 8, 5862 (2019).

    CAS  Google Scholar 

  22. S. Karthick, H. Lee, S. Kwon, R. Natarajan, and V. Saraswathy, Sensors 16, 2079 (2016).

    Article  Google Scholar 

  23. P. Pascariu, A. Airinei, N. Olaru, I. Petrila, V. Nica, L. Sacarescu, and F. Tudorache, Sens. Actuat. B Chem. 222, 1024 (2016).

    Article  CAS  Google Scholar 

  24. A. Ismail, M. Mamat, M. Malek, M. Yusoff, R. Mohamed, N. Sin, A. Suriani, and M. Rusop, Mater. Sci. Semicond. Proc. 81, 127 (2018).

    Article  CAS  Google Scholar 

  25. M. Yin, F. Yang, Z. Wang, M. Zhu, M. Liu, X. Xu, and Z. Li, Materials 10, 535 (2017).

    Article  Google Scholar 

  26. N. Sin, M. Mamat, M. Musa, A. Aziz, and M. Rusop, in IEEE Business, Engineering & Industrial Applications Colloquium (BEIAC) (2012).

  27. N. Sin, N. Samsudin, S. Ahmad, M. Mamat, and M. Rusop, Proc. Eng. 56, 801 (2013).

    Article  CAS  Google Scholar 

  28. V. Tomer, and S. Duhan, Sens. Actuat. B: Chem. 223, 750 (2016).

    Article  CAS  Google Scholar 

  29. Y. Zhen, F. Sun, M. Zhang, K. Jia, L. Li, and Q. Xue, RSC Adv. 6, 27008 (2016).

    Article  CAS  Google Scholar 

  30. D. Toloman, A. Popa, M. Stan, C. Socaci, A. Biris, G. Katona, F. Tudorache, I. Petrila, and F. Iacomi, Appl. Surf. Sci. 402, 410 (2017).

    Article  CAS  Google Scholar 

  31. V. Manikandan, I. Petrila, S. Vigneselvan, R.S. Mane, B. Vasile, R. Dharmavarapu, S. Lundgaard, S. Juodkazis, and J. Chandrasekaran, RSC Adv. 10, 3796 (2020).

    Article  CAS  Google Scholar 

  32. Y. Zhong, W. Li, X. Zhao, X. Jiang, S. Lin, Z. Zhen, W. Chen, D. Xie, H. Zhu, and A.C.S. Appl, Mater. Inter. 11, 13441 (2019).

    Article  CAS  Google Scholar 

  33. D. Zhang, H. Chang, P. Li, R. Liu, and Q. Xue, Sens. Actuat. B: Chem. 225, 233 (2016).

    Article  CAS  Google Scholar 

  34. K. Liu, M. Sakurai, and M. Aono, J. Mater. Chem. 22, 12882 (2012).

    Article  CAS  Google Scholar 

  35. W.P. Tai, and J.H. Oh, Thin Solid Films 422, 220 (2002).

    Article  CAS  Google Scholar 

  36. B. Murali Babu, and S. Vadivel, J. Mater. Sci. Mater. 28, 2442 (2016).

    Article  Google Scholar 

Download references

Acknowledgments

Author JJ is very thankful to the Department of Nanoscience and Technology, Mount Carmel College (Autonomous), Bengaluru, India, for providing lab facilities for synthesis and device fabrication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Pandya.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest or personal relationship that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joseph, J., Pradeep, N., Vadgama, V.S. et al. Humidity Sensing Properties of Hierarchical Fe Doped SnO2 Nanocoral-Like Structures. J. Electron. Mater. 50, 3949–3961 (2021). https://doi.org/10.1007/s11664-021-08911-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08911-x

Keywords

Navigation