Skip to main content
Log in

Fabrication of Mn-Ce Bimetallic Oxides as Electrode Material for Supercapacitors with High Performance

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Manganese and cerium (Mn-Ce) oxides were prepared under nitrogen and high-temperature oxidation via a bath precipitation method as materials for electrode assemblies in supercapacitors. The prepared Mn-Ce oxide composite was demonstrated to have a high specific capacitance of 163.7 F g−1 with 78.4% cyclic stability after 3000 cycles at a current density of 1 A g−1. Electrochemical impedance spectroscopy confirms that MnO2 improves the conductivity of CeO2. Results from XPS analysis suggest that the introduction of MnO2 enhances the concentrations of oxygen vacancies. Finally, band structure, density of states and Mulliken population were calculated using density functional theory, and the findings are consistent with the experimental and characterization results. Because of their excellent performances, Mn-Ce bimetallic oxides are promising electrode materials for supercapacitors.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6

Similar content being viewed by others

References

  1. A.S. Rajpurohit, N.S. Punde, and A.K. Srivastava, J. Colloid Interface Sci. 553, 328 (2019).

    CAS  Google Scholar 

  2. K. Pourreza, N. Bahrami Adeh, and N. Mohammadi, J. Energy Storage 30, 101429 (2020).

    Google Scholar 

  3. Y. Meng, D. Yu, Y. Teng, H. Qi, X. Liu, Y. Wu, X. Zhao, and X. Liu, J. Energy Storage 29, 101195 (2020).

    Google Scholar 

  4. J. Wang, X. Zhang, Z. Li, Y. Ma, and L. Ma, J. Power Sources 451, 227794 (2020).

    CAS  Google Scholar 

  5. F. Cheng, X. Yang, S. Zhang, and W. Lu, J. Power Sources 450, 227678 (2020).

    CAS  Google Scholar 

  6. S. Sun, S. Li, S. Wang, Y. Li, L. Han, H. Kong, and P. Wang, Mater. Lett. 182, 23 (2016).

    CAS  Google Scholar 

  7. F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, and V. Pellegrini, Science 347, 1246501 (2015).

    Google Scholar 

  8. A. Afif, S.M. Rahman, A. Tasfia Azad, J. Zaini, M.A. Islan, and A.K. Azad, J. Energy Storage 25, 100852 (2019).

    Google Scholar 

  9. M. Vangari, T. Pryor, and L. Jiang, J. Energy Eng. 139, 72 (2013).

    Google Scholar 

  10. C. Largeot, C. Portet, J. Chmiola, P.L. Taberna, Y. Gogotsi, and P. Simon, J. Am. Chem. Soc. 130, 2730 (2008).

    CAS  Google Scholar 

  11. P. Lu, D. Xue, H. Yang, and Y. Liu, Int. J. Smart Nano Mater. 4, 2 (2013).

    CAS  Google Scholar 

  12. A. González, E. Goikolea, J.A. Barrena, and R. Mysyk, Renew. Sustain. Energy Rev. 58, 1189 (2016).

    Google Scholar 

  13. X. Zou, Y. Zhou, Z. Wang, S. Chen, W. Li, B. Xiang, L. Xu, S. Zhu, and J. Hou, Chem. Eng. J. 350, 386 (2018).

    CAS  Google Scholar 

  14. Y. Rangom, X. Tang, and L.F. Nazar, ACS Nano 9, 7248 (2015).

    CAS  Google Scholar 

  15. M. Zhu, Y. Huang, Y. Huang, H. Li, Z. Wang, Z. Pei, Q. Xue, H. Geng, and C. Zhi, Adv. Mater. 29, 1 (2017).

    Google Scholar 

  16. K. Wang, J. Huang, and Z. Wei, J. Phys. Chem. C 114, 8062 (2010).

    CAS  Google Scholar 

  17. R.B. Ambade, S.B. Ambade, R.R. Salunkhe, V. Malgras, S.H. Jin, Y. Yamauchi, and S.H. Lee, J. Mater. Chem. A 4, 7406 (2016).

    CAS  Google Scholar 

  18. V. Subramanian, S.C. Hall, P.H. Smith, and B. Rambabu, Solid State Ionics 175, 511 (2004).

    CAS  Google Scholar 

  19. M. Huang, F. Li, F. Dong, Y.X. Zhang, and L.L. Zhang, J. Mater. Chem. A 3, 21380 (2015).

    CAS  Google Scholar 

  20. G. Yu, L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, Y. Cui, and Z. Bao, Nano Lett. 11, 4438 (2011).

    CAS  Google Scholar 

  21. R. Dong, Q. Ye, L. Kuang, X. Lu, Y. Zhang, X. Zhang, G. Tan, Y. Wen, and F. Wang, ACS Appl. Mater. Interfaces 5, 9508 (2013).

    CAS  Google Scholar 

  22. L. Wang, X. Xie, K.N. Dinh, Q. Yan, and J. Ma, Coord. Chem. Rev. 397, 138 (2019).

    CAS  Google Scholar 

  23. S. Arunachalam, B. Kirubasankar, D. Pan, H. Liu, C. Yan, Z. Guo, and S. Angaiah Green Energy Environ., (2020). https://doi.org/10.1016/j.gee.2020.07.021.

    Article  Google Scholar 

  24. K. Chen and D. Xue, J. Colloid Interface Sci. 446, 77 (2015).

    CAS  Google Scholar 

  25. Z. Ji, X. Shen, H. Zhou, and K. Chen, Ceram. Int. 41, 8710 (2015).

    CAS  Google Scholar 

  26. K. Prasanna, P. Santhoshkumar, Y.N. Jo, I.N. Sivagami, S.H. Kang, Y.C. Joe, and C.W. Lee, Appl. Surf. Sci. 449, 454 (2018).

    CAS  Google Scholar 

  27. C. Sun, H. Li, and L. Chen, Energy Environ. Sci. 5, 8475 (2012).

    CAS  Google Scholar 

  28. A.S. Dezfuli, M.R. Ganjali, H.R. Naderi, and P. Norouzi, RSC Adv. 5, 46050 (2015).

    CAS  Google Scholar 

  29. D. Deng, N. Chen, Y. Li, X. Xing, X. Liu, X. Xiao, and Y. Wang, Phys. E Low-Dimens. Syst. Nanostructures 86, 284 (2017).

    CAS  Google Scholar 

  30. N. Padmanathan and S. Selladurai, Ionics (Kiel). 20, 409 (2014).

    CAS  Google Scholar 

  31. C. Wei, K. Liu, J. Tao, X. Kang, H. Hou, C. Cheng, and D. Zhang, Chem. An Asian J. 13, 111 (2018).

    CAS  Google Scholar 

  32. M. Sun, Z. Li, H. Li, Z. Wu, W. Shen, and Y.Q. Fu, Electrochim. Acta 331, 135366 (2020).

    CAS  Google Scholar 

  33. N. Maheswari and G. Muralidharan, New J. Chem. 41, 10841 (2017).

    CAS  Google Scholar 

  34. X. Weng, P. Sun, Y. Long, Q. Meng, and Z. Wu, Environ. Sci. Technol. 51, 8057 (2017).

    CAS  Google Scholar 

  35. P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, H. Jin, P. Liu, J. Zhou, C.P. Wong, and Z.L. Wang, ACS Nano 7, 2617 (2013).

    CAS  Google Scholar 

  36. K. Singh, B. Kirubasankar, and S. Angaiah, Ionics (Kiel). 23, 731 (2017).

    CAS  Google Scholar 

  37. J. Lin, H. Wang, Y. Yan, X. Zheng, H. Jia, J. Qi, J. Cao, J. Tu, W. Fei, and J. Feng, J. Mater. Chem. A 6, 19151 (2018).

    CAS  Google Scholar 

  38. C. Shi, G.-L. Zang, Z. Zhang, G.-P. Sheng, Y.-X. Huang, G.-X. Zhao, X.-K. Wang, and H.-Q. Yu, Electrochim. Acta 132, 239 (2014).

    CAS  Google Scholar 

  39. M. Toupin, T. Brousse, and D. Bélanger, Chem. Mater. 16, 3184 (2004).

    CAS  Google Scholar 

  40. H. Zhang, J. Gu, J. Tong, Y. Hu, B. Guan, B. Hu, J. Zhao, and C. Wang, Chem. Eng. J., 286, 139 (2016).

    CAS  Google Scholar 

  41. Q. Guo, J. Yuan, Y. Tang, C. Song, and D. Wang, Electrochim. Acta 367, 137525 (2020).

    Google Scholar 

  42. L. Li, Z.A. Hu, N. An, Y.Y. Yang, Z.M. Li, and H.Y. Wu, J. Phys. Chem. C 118, 22865 (2014).

    CAS  Google Scholar 

  43. N.S. Arul, D. Mangalaraj, R. Ramachandran, A.N. Grace, and J.I. Han, J. Mater. Chem. A 3, 15248 (2015).

    CAS  Google Scholar 

  44. L. Li, X. Liu, C. Liu, H. Wan, J. Zhang, P. Liang, H. Wang, and H. Wang, Electrochim. Acta 259, 303 (2018).

    CAS  Google Scholar 

  45. K. Zhang, L. Mao, L.L. Zhang, H.S. On Chan, X.S. Zhao, and J. Wu, J. Mater. Chem. 21, 7302 (2011).

    CAS  Google Scholar 

  46. H. Li, Z. Li, Z. Wu, M. Sun, S. Han, C. Cai, W. Shen, and Y. Fu, J. Electrochem. Soc. 166, A1031 (2019).

    Google Scholar 

  47. D. Cai, H. Huang, D. Wang, B. Liu, L. Wang, Y. Liu, Q. Li, and T. Wang, ACS Appll. Mater. Interfaces 6, 15905 (2014).

    CAS  Google Scholar 

  48. A. Sacco, Renew. Sustain. Energy Rev. 79, 814 (2017).

    CAS  Google Scholar 

  49. K.B. Hatzell, M. Beidaghi, J.W. Campos, C.R. Dennison, E.C. Kumbur, and Y. Gogotsi, Electrochim. Acta 111, 888 (2013).

    CAS  Google Scholar 

  50. M. Kumar, J.-H. Yun, V. Bhatt, B. Singh, J. Kim, J.-S. Kim, B.S. Kim, and C.Y. Lee, Electrochim. Acta 284, 709 (2018).

    CAS  Google Scholar 

  51. N. Li, H. Zhao, Y. Zhang, Z. Liu, X. Gong, and Y. Du, CrystEngComm 18, 4158 (2016).

    CAS  Google Scholar 

  52. A. Jeyaranjan, T.S. Sakthivel, M. Molinari, D.C. Sayle, and S. Seal, Part. Part. Syst. Charact. 35, 1 (2018).

    Google Scholar 

  53. T. Saravanan, M. Shanmugam, P. Anandan, M. Azhagurajan, K. Pazhanivel, M. Arivanandhan, Y. Hayakawa, and R. Jayavel, Dalt. Trans. 44, 9901 (2015).

    CAS  Google Scholar 

  54. Z. Zhang, Z. Li, C. Sun, T. Zhang, and S. Wang, Catal. Today 298, 241 (2017).

    CAS  Google Scholar 

  55. L. He, Y. Lu, F. Wang, W. Jing, Y. Chen, and Y. Liu, Sens. Actuators B Chem. 254, 468 (2018).

    CAS  Google Scholar 

  56. Z. Shi, P. Shum, Z. Zhou, and L.K.-Y. Li, Surf. Coat. Technol. 320, 333 (2017).

    CAS  Google Scholar 

  57. P. Janoš, J. Henych, J. Pfeifer, N. Zemanová, V. Pilařová, D. Milde, T. Opletal, J. Tolasz, M. Malý, and V. Štengl, Environ. Sci NANO 4, 1283 (2017).

    Google Scholar 

  58. J. Wang, S. Yang, H. Sun, J. Qiu, and Y. Men, J. Colloid Interface Sci. 577, 355 (2020).

    CAS  Google Scholar 

  59. J. Wang, C. Zhang, S. Yang, H. Liang, and Y. Men, Catal. Sci. Technol. 9, 6379 (2019).

    CAS  Google Scholar 

  60. J. Kong, Z. Xiang, G. Li, and T. An, Appl. Catal. B Environ. 269, 118755 (2020).

    CAS  Google Scholar 

  61. K. Chu, Y.H. Cheng, Q.Q. Li, Y.P. Liu, and Y. Tian, J. Mater. Chem. A. 8, 5865 (2020).

    CAS  Google Scholar 

  62. Z. Wang, Q. Wang, Y. Liao, G. Shen, X. Gong, N. Han, H. Liu, and Y. Chen, ChemPhysChem 12, 2763 (2011).

    CAS  Google Scholar 

  63. D. Joung, V. Singh, S. Park, A. Schulte, S. Seal, and S.I. Khondaker, J. Phys. Chem. C 115, 24494 (2011).

    CAS  Google Scholar 

  64. C.L. Corkhill, D.J. Bailey, F.Y. Tocino, M.C. Stennett, J.A. Miller, J.L. Provis, K.P. Travis, and N.C. Hyatt, ACS Appl Mater. Interfaces 8, 10562 (2016).

    CAS  Google Scholar 

  65. D. García Pintos, A. Juan, and B. Irigoyen, J. Phys. Chem. C 17, 18063 (2013).

    Google Scholar 

  66. B.L. Narayana, B.D. Mukri, P. Ghosal, and C. Subrahmanyam, ChemistrySelect 1, 3150 (2016).

    CAS  Google Scholar 

  67. B. Pandit, B.R. Sankapal, and P.M. Koinkar, Sci. Rep. 9,, 1 (2019).

    CAS  Google Scholar 

  68. L.S. Aravinda, K.U. Bhat, and B. Ramachandra, Mater. Lett. 112, 158 (2013).

    CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the National Key R&D Program in China (No. 2017YFC0210202-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinghui Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 962 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Wu, T., Han, Y. et al. Fabrication of Mn-Ce Bimetallic Oxides as Electrode Material for Supercapacitors with High Performance. J. Electron. Mater. 50, 2725–2737 (2021). https://doi.org/10.1007/s11664-021-08791-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08791-1

Keywords

Navigation