Skip to main content
Log in

A Predictive Model for Thermal Conductivity of Nano-Ag Sintered Interconnect for a SiC Die

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nano-Ag sintering technology is a promising die attach method for power semiconductors in high reliability and high temperature (i.e. 300°C) applications. However, the present predictive models for thermal conductivity of multiphase materials are not suitable for the porous sintered Ag due to the model limitations of low porosity, i.e. < 10%, and simple pore geometry (sphere or ellipsoid). In this paper, an extension differential scheme (EDS) model based on the classical differential scheme (DS) approach has been developed. The thermal conductivity of the microporous Ag die attach layer on a SiC device was developed by measuring seven different sintering parameters that are fitted with the model. The finite element method (FEM) was also employed to analyze the influence of different factors. The results indicate that the EDS model has better adaptability and accuracy, which will be important for implementation of this new die attach material and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Chen, Y. Yao, D. Boroyevich, K.D.T. Ngo, P. Mattavelli, and K. Rajashekara, IEEE Trans. Power Electron. 29, 2307 (2015).

    Article  Google Scholar 

  2. W. Zhang, Y. Su, M. Mu, and D.J. Gilham, IEEE Trans. Power Electron. 30, 1421 (2015).

    Article  Google Scholar 

  3. A.M. Abou-Alfotouh, A.V. Radun, H.R. Chang, and C. Winterhalter, IEEE Trans. Power Electron. 21, 880 (2017).

    Article  Google Scholar 

  4. L.C. Wai, D.M. Zhi, V.S. Rao, and M.W. Daniel Rhee, in IEEE Electronic Packaging Technology Conference Proceedings (2012), pp. 372–378

  5. L.C. Wai, W.W. Seit, E.P. Jian Rong, M.Z. Ding, V.S. Rao, and D.R. Minwoo, in IEEE Electronic Packaging Technology Conference Proceedings (2013), pp. 335–340

  6. D. Wakuda, K.-S. Kim, and K. Suganuma, in IEEE International Conference on Polymers and Adhesives in Microelectronics and Photonics Proceedings (2008), pp. 1–6

  7. D. Wakuda, K.-S. Kim, and K. Suganuma, in International Conference on Nanotechnology Proceedings (2009), pp. 412–415

  8. R. Durairaj, R. Ashayer, H.R. Kotadia, N. Haria, C. Lorenz, O. Mokhtari, and S.H. Mannan, in International Conference on Nanotechnology Proceedings (2012), pp. 1–4.

  9. R. Khazaka, L. Mendizabal, and D. Henry, J. Electron. Mater. 43, 2456 (2014).

    Article  Google Scholar 

  10. S.A. Paknejad and S.H. Mannan, Microelectron. Rel. 7, 1 (2017).

    Article  Google Scholar 

  11. N. Heuck, A. Langer, A. Stranz, G. Palm, R. Sittig, A. Bakin, and A. Waag, IEEE Trans. Compon. Packag. Manuf. Technol. 1, 1846 (2011).

    Article  Google Scholar 

  12. T. Kunimune, M. Kuramoto, S. Ogawa, M. Niwa, M. Nogi, and K. Suganuma, IEEE Trans. Compon. Packag. Manuf. Technol. 2, 909 (2012).

    Article  Google Scholar 

  13. R. Dudek, R. Doring, P. Sommer, B. Seiler, K. Kreyssig, H. Walter, M. Becker, and M. Gunther, in International Conference on Thermal, Mechanical and Multi-Physics simulation and Experiments in Microelectronics and Microsystems Proceedings (2014), pp. 1–9

  14. KonstantinMarkov and LuigiPreziosi, Heterogeneous Media : Micromechanics Modeling Methods and Simulations (New York: Springer, 2001), pp. 21–85.

    Google Scholar 

  15. J.C. Maxwell, A Treatise on Electricity and magnetism (Humphrey Milford: Oxford University Press, 1955), pp. 478–480.

    Google Scholar 

  16. J.D. Eshelby, in Royal Society of London Series Mathematical and Physical Sciences Proceedings (1957), pp. 376–396

  17. S.T. Chua and K.S. Siow, J. Alloys Compd. 687, 486 (2016).

    Article  Google Scholar 

  18. F. Jafari and P.D. Higgins, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36, 21 (1989).

    Article  Google Scholar 

  19. L.S. Pritchard, P.P. Acarnley, and C.M. Johnson, IEEE Trans. Compon. Packag. Technol. 27, 259 (2004).

    Article  Google Scholar 

  20. J.D. Eshelby, Prog. Solid Mech. 2, 87 (1961).

    Google Scholar 

  21. X. Markenscoff, J. Elast. 49, 163 (1997).

    Article  Google Scholar 

  22. G.J. Rodin, J. Mech. Phys. Solids 44, 1977 (1996).

    Article  Google Scholar 

  23. V.A. Lubarda and X. Markenscoff, Int. J. Solids Struct. 35, 3406 (1998).

    Article  Google Scholar 

  24. I.I. Bogdanov, V.V. Mourzenko, J.F. Thovert, and P.M. Adler, Water Resour. Res. 39, 257 (2003).

    Google Scholar 

  25. D.A.G. Bruggeman, Ann. Phys-Berlin 24, 636 (1935).

    Article  Google Scholar 

  26. D.A.G. Bruggeman, Ann. Phys-Berlin 25, 645 (1936).

    Article  Google Scholar 

  27. R. McLaughlin, Int. J. Eng. Sci. 15, 237 (1977).

    Article  Google Scholar 

  28. Z. Wang, J.E. Alaniz, W. Jang, J.E. Garay, and C. Dames, Nano Lett. 11, 2206 (2011).

    Article  Google Scholar 

  29. H. Dong, B. Wen, and R. Melnik, Sci. Rep-UK 4, 7037 (2014).

    Article  Google Scholar 

  30. J. Bliedtner and W. Hansen, Potential Theory (New York: Springer, 1986), pp. 93–131.

    Google Scholar 

  31. I.C. Kim and S. Torquato, J. Appl. Phys. 71, 2727 (1992).

    Article  Google Scholar 

  32. A. Lawley, Advances in Metal Processing, ed. J.J. Burke, R. Mehrabian, and V. Weiss (Boston: Springer, 1981), p. 91.

    Chapter  Google Scholar 

  33. I. Doltsinis and F. Osterstock, Arch. Comput. Methods Eng. 12, 303 (2005).

    Article  Google Scholar 

  34. N.W. Chen, and C. Hong, in IEEE International Conference on Systems, Man and Cybernetics Proceedings (1987), pp. 177–181

  35. Y. Luo, in IEEE CPMT Symposium Japan Proceedings (2010), pp. 1–5

  36. F. Yu, J. Cui, Z. Zhou, K. Fang, R.W. Johnson, and M.C. Hamilton, IEEE Trans. Power Electron. 32, 7083 (2017).

    Article  Google Scholar 

  37. P. He, J. Zhang, J. Zhang, and L. Yin, Adv. Mater. Sci. Eng. 2017, 1 (2017).

    Google Scholar 

  38. V. Szekely, Microelectron. J. 28, 277 (1997).

    Article  Google Scholar 

  39. J.G. Bai, Z.Z. Zhang, G.Q. Lu, and D.P.H. Hasselman, Int. J. Thermophys. 26, 1607 (2005).

    Article  Google Scholar 

  40. H. Wang, Y. Xu, M. Shimono, Y. Tanaka, and M. Yamazaki, Mater. Trans. 48, 2349 (2007).

    Article  Google Scholar 

  41. Y. Ocak, S. Aksöz, N. Maraşlı, and E. Çadırlı, Fluid Phase Equilib. 295, 60 (2010).

    Article  Google Scholar 

  42. A. Aizaz, P. Bauer, T.L. Grimm, N.T. Wright, and C.Z. Antoine, IEEE Trans. Appl. Supercond. 17, 1310 (2007).

    Article  Google Scholar 

  43. S.S. Mahajan, G. Subbarayan, and B.G. Sammakia, IEEE Trans. Compon. Packag. Manuf. Technol. 1, 1132 (2011).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Key Research and Development Program of China (2017YFB1104900), and National Natural Science Foundation of China (Grant Nos. 51520105007, 51775299)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Zhang, H., Zou, G. et al. A Predictive Model for Thermal Conductivity of Nano-Ag Sintered Interconnect for a SiC Die. J. Electron. Mater. 48, 2811–2825 (2019). https://doi.org/10.1007/s11664-019-06984-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-06984-3

Keywords

Navigation