Skip to main content
Log in

Separation of Li and Co from LiCoO2 Cathode Material Through Aluminothermic Reduction: Thermodynamic Calculations and Experimental Results

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The increase in electric vehicle (EV) commercialization consequently escalates the number of end-of-life lithium-ion batteries (EOL LIBs) which leads to environmental concerns. Different routes have been proposed and investigated to recycle EOL LIBs. This current study evaluates the aluminothermic reduction as an alternative route for separating Li and Co from LiCoO2 (the common cathode material) through thermodynamic modeling and experimental study. Three different atmospheres: ambient air, inert, and vacuum, were tested. A thermite reaction leading to ignition and melting of the sample was observed in experiments in all atmospheres. The reaction was found to be kinetically fast and highly exothermic resulting in the melting of the sample forming Co droplets in liquid slag. The experiments of the three atmospheres showed that Li and Co can be extracted in the form of LiOH, LiAlO2, and CoAl alloy. The approach presented could be the basis for the development of a low-energy alternative route to recover both Li and Co in a single process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10.
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. A.F. Jensen, E. Cherchi, and S.L. Mabit: Transp. Res. D, 2013, vol. 25, pp. 24–32.

    Article  Google Scholar 

  2. J. Dunn, L. Gaines, J. Kelly, C. James, and K. Gallagher: Energy Environ. Sci., 2015, vol. 8, pp. 158–68.

    Article  CAS  Google Scholar 

  3. Y. Lyu, X. Wu, K. Wang, Z. Feng, T. Cheng, Y. Liu, M. Wang, R. Chen, L. Xu, and J. Zhou: Adv. Energy Mater., 2021, vol. 11, p. 2000982.

    Article  CAS  Google Scholar 

  4. K.M. Winslow, S.J. Laux, and T.G. Townsend: Resour. Conserv. Recycl., 2018, vol. 129, pp. 263–77.

    Article  Google Scholar 

  5. G. Harper, R. Sommerville, E. Kendrick, L. Driscoll, P. Slater, R. Stolkin, A. Walton, P. Christensen, O. Heidrich, and S. Lambert: Nature, 2019, vol. 575, pp. 75–86.

    Article  CAS  Google Scholar 

  6. Z.A. Kader, A. Marshall, and J. Kennedy: Emergent Mater., 2021, vol. 4, pp. 725–35.

    Article  CAS  Google Scholar 

  7. T.P. Hendrickson, O. Kavvada, N. Shah, R. Sathre, and C.D. Scown: Environ. Res. Lett., 2015, vol. 10, p. 014011.

    Article  Google Scholar 

  8. H. Pinegar and Y.R. Smith: J. Sustain. Metall., 2019, vol. 5, pp. 402–16.

    Article  Google Scholar 

  9. B. Huang, Z. Pan, X. Su, and L. An: J. Power. Sources, 2018, vol. 399, pp. 274–86.

    Article  CAS  Google Scholar 

  10. J. Li, G. Wang, and Z. Xu: J. Hazard. Mater., 2016, vol. 302, pp. 97–104.

    Article  CAS  Google Scholar 

  11. S. Pindar and N. Dhawan: Sustain. Mater. Technol., 2020, vol. 25, p. e00157.

    CAS  Google Scholar 

  12. W. Wang, Y. Zhang, X. Liu, and S. Xu: ACS Sustain. Chem. Eng., 2019, vol. 7, pp. 12222–30.

    CAS  Google Scholar 

  13. S. Dang, P. Zhou, P. Shi, Y. Min, and Q. Xu: ACS Sustain. Chem. Eng., 2021, vol. 9, pp. 15375–85.

    Article  CAS  Google Scholar 

  14. W. Wang, Y. Zhang, L. Zhang, and S. Xu: J. Clean. Prod., 2020, vol. 249, p. 119340.

    Article  CAS  Google Scholar 

  15. C. Bale, E. Bélisle, P. Chartrand, S. Decterov, G. Eriksson, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melançon, and A. Pelton: Calphad, 2009, vol. 33, pp. 295–311.

    Article  CAS  Google Scholar 

  16. C.W. Bale, P. Chartrand, S. Degterov, G. Eriksson, K. Hack, R.B. Mahfoud, J. Melançon, A. Pelton, and S. Petersen: Calphad, 2002, vol. 26, pp. 189–228.

    Article  CAS  Google Scholar 

  17. O. Jankovský, J. Kovařík, J. Leitner, K. Růžička, and D. Sedmidubský: Thermochim. Acta, 2016, vol. 634, pp. 26–30.

    Article  Google Scholar 

  18. Y.C. Zhang, H. Tagawa, S. Asakura, J. Mizusaki, and H. Narita: J. Electrochem. Soc., 1997, vol. 144, p. 4345.

    Article  CAS  Google Scholar 

  19. E. Antolini and M. Ferretti: J. Solid State Chem., 1995, vol. 117, pp. 1–7.

    Article  CAS  Google Scholar 

  20. S. Pindar and N. Dhawan: JOM, 2019, vol. 71, pp. 4483–91.

    Article  CAS  Google Scholar 

  21. S.R. Sunil and N. Dhawan: Trans. Indian Inst. Met., 2019, vol. 72, pp. 3035–44.

    Article  CAS  Google Scholar 

  22. J. Mao, J. Li, and Z. Xu: J. Clean. Prod., 2018, vol. 205, pp. 923–29.

    Article  CAS  Google Scholar 

  23. J. Li, Y. Lai, X. Zhu, Q. Liao, A. Xia, Y. Huang, and X. Zhu: J. Hazard. Mater., 2020, vol. 398, p. 122955.

    Article  CAS  Google Scholar 

  24. J.J. Moore and H. Feng: Prog. Mater. Sci., 1995, vol. 39, pp. 243–73.

    Article  CAS  Google Scholar 

  25. D.C. Nababan, R. Mukhlis, Y. Durandet, M.I. Pownceby, L. Prentice, and M.A. Rhamdhani: Submitted to Metall. Mater. Trans. B, 2022, vol. pp.

  26. S. Purohit, B. Ekman, R. Mejias, G. Brooks, and M.A. Rhamdhani: J. Cleaner Prod., 2018, vol. 205, pp. 1017–28.

    Article  CAS  Google Scholar 

  27. N.K. Sundaram and A. Subramania: Electrochim. Acta, 2007, vol. 52, pp. 4987–93.

    Article  CAS  Google Scholar 

  28. N. Zhang, J. He, W. Han, and Y. Wang: J. Mater. Sci., 2019, vol. 54, pp. 9603–12.

    Article  CAS  Google Scholar 

  29. R. Arendt and M. Curran: J. Electrochem. Soc., 1980, vol. 127, p. 1660.

    Article  CAS  Google Scholar 

  30. T. Avalos-Rendón, J. Casa-Madrid, and H. Pfeiffer: J. Phys. Chem. A, 2009, vol. 113, pp. 6919–23.

    Article  Google Scholar 

  31. N.T.T. Ha, T. Van Giap, and N.T. Thanh: Mater. Lett., 2020, vol. 267, p. 127506.

    Article  Google Scholar 

  32. H. Cao, B. Xia, Y. Zhang, and N. Xu: Solid State Ionics, 2005, vol. 176, pp. 911–14.

    Article  CAS  Google Scholar 

  33. S.-H. Lee, Y.-J. Jeong, S.-H. Lim, E.-A. Lee, C.-W. Yi, and K. Kim: J. Korean Electrochem. Soc., 2010, vol. 13, pp. 45–9.

    Article  CAS  Google Scholar 

  34. J.F. Drillet, F. Holzer, T. Kallis, S. Müller, and V.M. Schmidt: Phys. Chem. Chem. Phys., 2001, vol. 3, pp. 368–71.

    Article  CAS  Google Scholar 

  35. J. Mohapatra, M. Xing, J. Elkins, and J.P. Liu: J. Alloys Compd., 2020, vol. 824, 153874.

    Article  CAS  Google Scholar 

  36. A. Tomaszewska, T. Mikuszewski, G. Moskal, and D. Migas: J. Alloys Compd., 2018, vol. 750, pp. 741–49.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was conducted under the Swinburne-Automotive Engineering Graduate Program (AEGP) scholarship, funded by the Australian Government through the Department of Industry, Science, Energy and Resources [previously known as the Department of Industry, Innovation, and Science (DIIS)]. The work was also co-funded by the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia.

Conflict of interest

The authors report no declarations of conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. C. Nababan or M. A. Rhamdhani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nababan, D.C., Mukhlis, R., Durandet, Y. et al. Separation of Li and Co from LiCoO2 Cathode Material Through Aluminothermic Reduction: Thermodynamic Calculations and Experimental Results. Metall Mater Trans B 55, 352–375 (2024). https://doi.org/10.1007/s11663-023-02962-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02962-7

Navigation