Skip to main content
Log in

Hydrogen Reduction of LiCoO2 Cathode Material: A Kinetic Study

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Metal production is facing new challenges due to climate change and declining primary ore quality; thus, new technologies with sustainable processing routes are needed. One way to address this is to recover metals from secondary resources such as end-of-life batteries using a cleaner reducing agent hydrogen that would reduce direct carbon dioxide emissions during pyrometallurgical processing. Recycling of Li-ion battery cathode materials using hydrogen would result in a more benign metal production process and would simultaneously provide a sustainable solution to treat wastes. This study investigated the kinetics of H2 reduction of LiCoO2 at 600–1000 °C up to 180 min reaction time using an isothermal mass change analysis supported with detailed microstructure evolution observations. The overall reduction mechanism appeared to follow the shrinking-core model with a different rate-limiting step depending on the reduction temperature. The activation energy of reduction at 600–800 °C was calculated to be 37.4 kJ/mol and was controlled by the nucleation step. The information and data obtained are useful when comparing different recycling methods and optimizing the reduction parameters of spent Li-ion battery process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19.
Fig. 20

Similar content being viewed by others

References

  1. G. Gaustad, E. Williams, and A. Leader: Resources Conserv. Recycl., 2021, vol. 167, p. 105213.

    Article  CAS  Google Scholar 

  2. A. Tuncuk, V. Stazi, A. Akcil, E.Y. Yazici, and H. Deveci: Miner. Eng., 2012, vol. 25, pp. 28–37.

    Article  CAS  Google Scholar 

  3. C. Erüst, A. Akcil, C.S. Gahan, A. Tuncuk, and H. Deveci: J. Chem. Technol. Biotechnol., 2013, vol. 88, pp. 2115–32.

    Article  Google Scholar 

  4. A. Vidyadhar: A Review of Technology of Metal Recovery from Electronic Waste, Rijeka, IntechOpen, 2016, pp. 121–58.

    Google Scholar 

  5. R. Widmer, H. Oswald-Krapf, D. Sinha-Khetriwal, M. Schnellmann, and H. Böni: Environ. Impact Assess. Rev., 2005, vol. 25, pp. 436–58.

    Article  Google Scholar 

  6. B.C.P. Forti, R. Kuehr, G. Bel, The Global E-waste Monitor 2020: Quantities, Flows and the Circular Economy Potential (Bonn/Geneva/Rotterdam, 2020)

  7. IEA, Global EV Outlook 2022 (IEA, Paris, 2022)

  8. IEA, Net Zero by 2050 (IEA, Paris, 2021)

  9. M. Chen, X. Ma, B. Chen, R. Arsenault, P. Karlson, N. Simon, and Y. Wang: Joule, 2019, vol. 3, pp. 2622–46.

    Article  CAS  Google Scholar 

  10. Capgemini, Second Life Batteries: A Sustainable Business Opportunity, Not a Conundrum (Capgemini Group, 2019). https://www.capgemini.com/2019/04/second-life-batteries-a-sustainable-business-opportunity-not-a-conundrum/. Accessed 2 Sept 2022

  11. S. Mridha: Metallic Materials, Elsevier, 2016, pp. 1–7.

    Google Scholar 

  12. B. Balasubramaniam, N. Singh, S. Verma, and R.K. Gupta: Recycling of Lithium From Li-ion Batteries, Elsevier, Oxford, 2020, pp. 546–54.

    Google Scholar 

  13. E. Hsu, K. Barmak, A.C. West, and A.H.A. Park: Green Chem., 2019, vol. 21, pp. 919–36.

    Article  CAS  Google Scholar 

  14. D.W. Blowes, C.J. Ptacek, J.L. Jambor, C.G. Weisener, D. Paktunc, W.D. Gould, and D.B. Johnson: 115—The Geochemistry of Acid Mine Drainage, Elsevier, Oxford, 2014, pp. 131–90.

    Google Scholar 

  15. M. Aarabi-Karasgani, F. Rashchi, N. Mostoufi, and E. Vahidi: Hydrometallurgy, 2010, vol. 102, pp. 14–21.

    Article  CAS  Google Scholar 

  16. T. Havlik, D. Orac, M. Petranikova, A. Miskufova, F. Kukurugya, and Z. Takacova: J. Hazard. Mater., 2010, vol. 183, pp. 866–73.

    Article  CAS  Google Scholar 

  17. Y. Huo, Z. Chang, W. Li, S. Liu, and B. Dong: Waste and Biomass Valorization, 2015, vol. 6, pp. 159–65.

    Article  CAS  Google Scholar 

  18. W. Gu, J. Bai, B. Dong, X. Zhuang, J. Zhao, C. Zhang, J. Wang, and K. Shih: Chem. Eng. J., 2017, vol. 324, pp. 122–29.

    Article  CAS  Google Scholar 

  19. M. Wędrychowicz, A. Piotrowicz, T. Skrzekut, P. Noga, and A. Bydalek: Materials (Basel), 2022, vol. 15, p. 2089.

    Article  Google Scholar 

  20. D. Spreitzer and J. Schenk: Steel Res. Int., 2019, vol. 90, p. 1900108.

    Article  Google Scholar 

  21. S. Luidold and H. Antrekowitsch: JOM, 2007, vol. 59, pp. 58–62.

    Article  CAS  Google Scholar 

  22. Z. Huang, F. Liu, B. Makuza, D. Yu, X. Guo, and Q. Tian: ACS Sustain. Chem. Eng., 2022, vol. 10, pp. 756–65.

    Article  CAS  Google Scholar 

  23. Z. Huang, D. Yu, B. Makuza, Q. Tian, X. Guo, and K. Zhang: Front. Chem., 2022, vol. 10, p. 1019493.

    Article  CAS  Google Scholar 

  24. H. Pinegar, R. Marthi, P. Yang, and Y.R. Smith: ACS Sustain. Chem. Eng., 2021, vol. 9, pp. 7447–53.

    Article  CAS  Google Scholar 

  25. B.A. Nuraeni, K. Avarmaa, L.H. Prentice, W.J. Rankin, and M.A. Rhamdhani: SM&T, 2022, vol. 34, p. e00526.

    CAS  Google Scholar 

  26. B.A. Nuraeni, K. Avarmaa, L.H. Prentice, W.J. Rankin, and M.A. Rhamdhani: Metall. Mater. Trans. B, 2023, vol. 54(2), pp. 602–20.

    Article  CAS  Google Scholar 

  27. B.A. Nuraeni, K.L. Avarmaa, L.H. Prentice, W.J. Rankin, M.I. Pownceby, and M.A. Rhamdhani: Metall. Mater. Trans. B, 2023, vol. 54(4), pp. 2011–36.

    Article  CAS  Google Scholar 

  28. ILO and WHO, Lithium Hydroxide Monohydrate (ILO, 2021). https://www.ilo.org/dyn/icsc/showcard.display?p_version=2&p_card_id=0914. Accessed 1 Sept 2022

  29. O. Levenspiel: Chemical Reaction Engineering, 3rd ed. Wiley, New York, 1999, p. 566.

    Google Scholar 

  30. A. Khawam and D.R. Flanagan: J. Phys. Chem. B, 2006, vol. 110, pp. 17315–28.

    Article  CAS  Google Scholar 

  31. L. Mooij and B. Dam: Phys. Chem. Chem. Phys., 2013, vol. 15(27), pp. 11501–10.

    Article  CAS  Google Scholar 

  32. F. Pyrczak: Making Sense of Statistics: A Conceptual Overview, 5th ed. Pyczak Pub, Glendale, 2010, pp. 141–45.

    Google Scholar 

  33. B. Tomić-Tucaković, D. Majstorović, D. Jelić, and S. Mentus: Thermochim. Acta. Acta, 2012, vol. 541, pp. 15–24.

    Article  Google Scholar 

  34. N.G. Gallegos and J.M.P. Lopez: Mater. Chem. Phys., 1988, vol. 19, pp. 431–46.

    Article  CAS  Google Scholar 

  35. H.Y. Lin and Y.W. Chen: Mater. Chem. Phys., 2004, vol. 85, pp. 171–75.

    Article  CAS  Google Scholar 

  36. L.E. Revell and B.E. Williamson: J. Chem. Educ., 2013, vol. 90, pp. 1024–27.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank and acknowledge the financial support from Swinburne University’s Automotive Engineering Graduate Program (AEGP) by the Australian Government through the Department of Industry, Science, and Resources, and the Commonwealth Scientific and Industrial Research Organisation (CSIRO).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bintang A. Nuraeni or M. Akbar Rhamdhani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuraeni, B.A., Avarmaa, K.L., Prentice, L.H. et al. Hydrogen Reduction of LiCoO2 Cathode Material: A Kinetic Study. Metall Mater Trans B 55, 319–336 (2024). https://doi.org/10.1007/s11663-023-02960-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02960-9

Navigation