Skip to main content
Log in

Thermodynamic Analysis of TiN Precipitation in SWRH92A High Carbon Tire Cord Steel Under the Influence of Solute Micro-segregations During Solidification

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The precipitation of TiN inclusion during the solidification of SWRH92A high carbon tire cord steel has been thermodynamically calculated. The influence of solute micro-segregations calculated by Ohnaka and Clyne–Kurz models, respectively, on the thermodynamic parameters is considered. The TiN precipitation module is coupled with the Ti and N micro-segregations when the condition of TiN precipitation is satisfied. Furthermore, the TiN growth is predicted based on the thermodynamic calculation results. The results first show that the solute elements of molten steel segregate to different extents during solidification. The carbon concentration increases most significantly by about 1.8 wt pct due to its highest original content. By coupling TiN precipitation module with solute micro-segregation module, the segregated ratios of Ti and N decrease after the TiN inclusion starts precipitating. With cooling rate increasing from 0.17 to 1.67 K/s, TiN precipitation starts earlier, but the TiN particle size decreases from about 10 to about 3 μm. The TiN inclusion sizes calculated in the Ohnaka and Clyne–Kurz model cases are close and well validated by the metallographic images of TiN inclusions and the statistical data of TiN particle size distribution in high carbon tire cord steels. This agreement encourages the proposed calculation method and provides guidance for the future thermodynamic studies of nonmetallic inclusions of steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. K. Michelic, D. Loder, T. Reip, A. ArdehaliBarani and C. Bernhard: Mater. Charact., 2015, vol. 100, pp. 61-67.

    Article  CAS  Google Scholar 

  2. V. Descotes, S. Migot, F. Robaut, J.P. Bellot, V. Perrin-Guérin, S. Witzke and A. Jardy: Metall. Trans. A, 2015, vol. 46, pp. 2793-2795.

    Article  Google Scholar 

  3. J. Y. Li and W. Y. Zhang: ISIJ Int., 1989, vol. 29, pp. 158-164.

    Article  CAS  Google Scholar 

  4. J. Y. Yang, C. Ling, J. Z. Tang, C. Ni and L. C. Xiao: Heat Treat. Met., 2012, vol. 37, pp. 32-37.

    CAS  Google Scholar 

  5. J. Petit and C. Sarrazin-Baudoux: Key Eng. Mater., 2015, vol. 627, pp. 153-156.

    Article  Google Scholar 

  6. W. Yan, Y. Y. Shan and K. Yang: Metall. Trans A, 2007, vol. 38, pp. 1211-1222.

    Article  CAS  Google Scholar 

  7. J. L. Lei, Z. L. Xue and Y. D. Jiang: Metal. Int., 2012, vol. 17, pp. 10-15.

    CAS  Google Scholar 

  8. J. L. Lei, Z. L. Xue, Y. D. Jiang, J. Zhang, R. Xiong and F. Zou: J. Mater. Metall., 2014, vol. 13, pp. 125-127.

    CAS  Google Scholar 

  9. H. Y. Liu, H. L. Wang, L. Li, J. Q. Zheng, Y. H. Li and X. Y. Zeng: Ironmak. & Steelmak., 2011, vol. 38, pp. 53-58.

    Article  Google Scholar 

  10. J. Fu, J. Zhu, L. Di, F. Tong and Y. Wang: Acta Metall. Sin., 2000, vol. 36, pp. 801-804.

    CAS  Google Scholar 

  11. Jiang YD, Xue ZL, Zhang J (2014) J. Iron Steel Res. Int. 21(1):91-94.

    Article  Google Scholar 

  12. J. L. Lei, D. N. Zhao, Y. J. Fu and X. F. Xu: Arch. Foundry Eng., 2019, vol. 19, pp. 33-37.

    CAS  Google Scholar 

  13. Z. L. Xue, W. T. Jin, J. L. Lei and Y. D. Jiang: Steelmak., 2016, vol. 32, pp. 23-32.

    Google Scholar 

  14. X. F. Cai, Y. P. Bao, M. Wang, L. Lin, N. C. Dai and C. Gu: Metall. Res. Tech., 2015, vol. 112, pp. 407-418.

    Article  Google Scholar 

  15. L. Wang, Z. L. Xue, H. Y. Zhu and J.L. Lei: Results Phys., 2019, vol. 14, pp. 102428-102434.

    Article  Google Scholar 

  16. J. Chen: Manual of chart and data in common use of steel making, 2nd ed., The Metallurgical Industry Press, Beijing, 2010, p. 510.

    Google Scholar 

  17. Q. Tian, G. C. Wang, Y. Zhao, J. Li and Q. Wang: Metall. Trans. B, 2018, vol. 49, pp. 1149–1164.

    Article  Google Scholar 

  18. Z. Ma and D. Janke: ISIJ Int., 1998, vol. 38, pp. 46–52.

    Article  CAS  Google Scholar 

  19. X. F. Wan, J. S. Meng, D. G. Li, D. Y. Guo, J. X. Jia, X. W. Liao and D. Cao: Proc. Int. Symp. on Clean Steel Prod. Tech., The Chinese Society for Metals, Anshan, 2018, pp. 171–75.

  20. D. L. You, S. K. Michelic, P. Presoly, J. H. Liu and C. Bernhard: Metals, 2017, vol. 7, pp. 460.

    Article  Google Scholar 

  21. E. Scheil: Metallkunde, 1942, vol. 34, pp. 70–72.

    Google Scholar 

  22. H. D. Brody and M. C. Flemings: Trans. Metall. Soc. AIME, 1966, vol. 236, pp. 615–624.

    CAS  Google Scholar 

  23. T. W. Clyne and W. Kurz: Metall. Trans. A, 1981, vol. 12, pp. 965–971.

    Article  Google Scholar 

  24. I. Ohnaka: Trans. Iron Steel Inst. Japan, 1986, vol. 26, pp. 1045–1051.

    Article  CAS  Google Scholar 

  25. L. Wang, Z. L. Xue, Y. L. Chen and X. G. Bi: Processes, 2020, vol. 8, pp. 10-22.

    Article  Google Scholar 

  26. J. L. Lei, D. N. Zhao, H. Y. Zhu and Y. D. Jiang: Steelmak., 2018, vol. 34, pp. 66-71.

    Google Scholar 

  27. E. B. Yue, S.T. Qiu and Y. Gan: J. Iron Steel Res., 2007, vol. 19, pp. 35-38.

    CAS  Google Scholar 

  28. S. Luo, M. Y. Zhu, C. Ji and Z. Z. Cai: Iron Steel, 2010, vol. 45, pp. 31-36.

    CAS  Google Scholar 

  29. L. Yang, G. G. Cheng, S. J. Li, M. Zhao and G. P. Feng: ISIJ Int., 2015, vol. 55, pp. 1693-1698.

    Article  CAS  Google Scholar 

  30. X. Zhang, G. J. Ma and M. K. Meng: Philos. Mag., 2019, vol. 99, pp. 1041-1056.

    Article  CAS  Google Scholar 

  31. Y. M. Won and B. G. Thomas: Metall. Trans. A, 2001, vol. 32, pp. 1755–1167.

    Article  CAS  Google Scholar 

  32. Z. Z. Liu, J. Wei and K. K. Cai: ISIJ Int., 2002, vol. 42, pp. 958-963.

    Article  CAS  Google Scholar 

  33. D. L. Hu, H. Liu, J. B. Xie, J. Cheng, J. Li and J. X. Fu: J. Iron Steel Res. Int., 2018, vol. 25, pp. 803-812.

    Article  Google Scholar 

  34. W. J. Ma, Y. P. Bao, L. H. Zhao and M. Wang: Metall. Mater., 2014, vol. 21, pp. 234-239.

    CAS  Google Scholar 

  35. Y. N. Wang, J. Yang, X. L. Xin, R. Z. Wang and L. Y. Xu: Metall. Trans. B, 2016, vol. 47, pp. 1378–1389.

    Article  Google Scholar 

  36. J. H. Shin and J. H. Park: Metall. Trans. B, 2020, vol. 51B, pp. 1211–1224.

    Article  Google Scholar 

  37. D. L. You, S. K. Michelic, C. Bernhard, D. Loder and G. Wieser: ISIJ Int., 2016, vol. 56, pp. 1770-1778.

    Article  CAS  Google Scholar 

  38. C. F. Yu and Z. L. Xue: J. Wuhan Uni. Sci. Tech., 2015, vol. 38, pp. 241-244.

    Google Scholar 

  39. Y. H. Li, J. Q. Zheng, G. Q. Lin and H. Y. Liu: Proc. Symp. on Adv. Spec. Steel Prod. Tech., The Chinese Society for Metals, Beijing, 2011, pp. 368–71.

  40. D. Y. Guo, Y. H. Ren, B. X. Wang, H. Gao and B. Zhang: Proc. Symp. on Domest. Steelmaking–Continuous Casting Prod. Tech., The Chinese Society for Metals, Tangshan, 2014, pp. 327–31.

  41. H. Y. Liu, J. Q. Zheng, Y. H. Li, G. Q. Lin, Z. L. Xue and H. L. Wang: J. Uni. Sci. Tech. Beijing, 2010, vol. 32, pp. 866-871.

    CAS  Google Scholar 

  42. Z. L. Xue, C. F. Yu, L. W. Qiu, W. T. Chen and J. Zhang: J. Chongqing Uni., 2015, vol. 38, pp. 93-98.

    CAS  Google Scholar 

  43. N. Li, L. Wang, Z. L. Xue, C. Z. Li, A. Huang and F. F. Wang: Results Phys., 2020, vol. 16, pp. 102929-102937.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support for this work from the National Natural Science Foundations of China (Grant Nos. 51874214, 51804230), China Postdoctoral Science Foundation (Grant No. 2020M672425), and Hubei Provincial Natural Science Foundation (Grant No. 2020CFB133).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengzhi Li or Zhengliang Xue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 17, 2020, accepted April 1, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Li, C., Wang, L. et al. Thermodynamic Analysis of TiN Precipitation in SWRH92A High Carbon Tire Cord Steel Under the Influence of Solute Micro-segregations During Solidification. Metall Mater Trans B 52, 2056–2071 (2021). https://doi.org/10.1007/s11663-021-02166-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02166-x

Navigation