Skip to main content
Log in

Analysis of precipitation behavior of MnS in sulfur-bearing steel system with finite-difference segregation model

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

To further reveal the influence of micro-segregation on the precipitation behavior of MnS in sulfur-bearing steel system, a coupled model of micro-segregation and MnS precipitation was established by the finite-difference method based on various calculation domains and the solid diffusion degrees, and a new controlled diffusion equation with more stable convergence was also used. 49MnVS3 and 1215 steels were used to analyze the influence of calculation domain, segregation model and S content on the precipitation behavior of MnS. The calculation results were verified by a high-temperature confocal laser scanning microscope (HT-CLSM). The results show that the domain has little effect on the precipitation temperature, precipitation solid fraction and precipitation amount of MnS, but affects the precipitation location and segregation of the solutes. For low- and medium-sulfur steels, the temperatures calculated by the diffusion control growth (DCG) model and the Lever model were nearly identical, whereas the temperature calculated by the Scheil model was lower. However, for high-sulfur steels, the precipitation temperatures calculated by three segregation models were nearly same. The precipitation solid fraction is more reasonable to describe the precipitation behavior of MnS. The precipitation behavior of MnS, observed by the HT-CLSM, matches well with that in the DCG model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L.F. Zhang, J. Iron Steel Res. Int. 13 (2006) No. 3, 1–8.

    Article  Google Scholar 

  2. H. Schumann, Metallographie, Deutscher Verlag fuer Grundstoffindustrie, Stuttgart, 1991.

    Google Scholar 

  3. G. Miyamoto, T. Shinyoshi, J. Yamaguchi, T. Furuhara, T. Maki, R. Uemori, Scripta Mater. 48 (2003) 371–377.

    Article  Google Scholar 

  4. J. Lehmann, M. Nadif, Rev. Mineral. Geochem. 73 (2011) 493–511.

    Article  Google Scholar 

  5. G.C. Wang, S.L. Li, X.G. Ai, C.M. Zhang, C.B. Lai, J. Iron Steel Res. Int. 22 (2015) 566–572.

    Article  Google Scholar 

  6. Y.J. Xia, F.M. Wang, Steelmaking 27 (2011) 55–59.

    Google Scholar 

  7. P.J. Chen, C.Y. Zhu, G.Q. Li, Y.W. Dong, Z.C. Zhang, ISIJ Int. 57 (2017) 1019–1028.

    Article  Google Scholar 

  8. Y.D. Li, C.J. Liu, C.L. Li, M.F. Jiang, J. Iron Steel Res. Int. 22 (2015) 457–463.

    Article  Google Scholar 

  9. S.K. Choudhary, A. Ghosh, ISIJ Int. 49 (2009) 1819–1827.

    Article  Google Scholar 

  10. L. Xiang, E.B. Yue, D.D. Fan, S.T. Qiu, P. Zhao, J. Iron Steel Res. Int. 15 (2008) No. 5, 88–94.

    Article  Google Scholar 

  11. X.W. Zhang, L.F. Zhang, W. Yang, Y.C. Dong, Y.Z. Li, Iron and Steel 51 (2016) No. 9, 30–39.

    Google Scholar 

  12. D. You, C. Bernhard, G. Wieser, S. Michelic, Steel Res. Int. 87 (2016) 840–849.

    Article  Google Scholar 

  13. S. Luo, M.Y. Zhu, C. Ji, Z.Z. Cai, Iron and Steel 45 (2010) No. 6, 31–36.

    Google Scholar 

  14. Y. Ueshima, Y. Sawada, S. Mizoguchi, H. Kajioka, Metall. Trans. A 20 (1989) 1375–1383.

    Article  Google Scholar 

  15. Y. Ueshima, S. Mizoguchi, T. Matsumiya, H. Kajioka, Metall. Trans. B 17 (1986) 845–859.

    Article  Google Scholar 

  16. Y. Meng, B.G. Thomas, Metall. Mater. Trans. B 34 (2003) 685–705.

    Article  Google Scholar 

  17. T. Kawawa, R. Imai, Tetsu-to-Hagane 63 (1977) 1965–1974.

    Article  Google Scholar 

  18. J. R. Davis, Metals handbook: desk edition, 2nd ed., CRC Press, Boca Raton, 1998.

    Google Scholar 

  19. Y.M. Won, B.G. Thomas, Metall. Mater. Trans. A 32 (2001) 1755–1767.

    Article  Google Scholar 

  20. I. Barin, O. Knacke, O. Kubaschewski, Thermochemical properties of inorganic substances, Springer, New York, 1977.

    Book  Google Scholar 

  21. X.G. Huang, Principles of steel metallurgy. 4th ed., Metallurgical Industry Press, Beijing, 2013.

    Google Scholar 

  22. Z.T. Ma, D. Janke, ISIJ Int. 38 (1998) 46–52.

    Article  Google Scholar 

  23. W.C. Li, Metallurgy and materials physical chemistry, Metallurgical Industry Press, Beijing, 2001.

    Google Scholar 

  24. X.L. Wan, K.M. Wu, K.C. Nune, Y. Li, L. Cheng, Sci. Technol. Weld. Joining 20 (2015) 3, 254–263.

    Article  Google Scholar 

  25. G.C. Jin, S.Y. Chen, Q.C. Li, G.W. Chang, X.D. Yue, J. Iron Steel Res. Int. 20 (2013) No. 10, 94–98.

    Article  Google Scholar 

Download references

Acknowledgements

The work is financially sponsored by the National Key Research and Development Program of China (No. 2018YFB0704400), the State Key Laboratory of Development and Application Technology of Automotive Steels (Bao-steel Group Co. Ltd.), and the National Natural Science Foundation of China (No. 51671124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-xun Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Dl., Liu, H., Xie, Jb. et al. Analysis of precipitation behavior of MnS in sulfur-bearing steel system with finite-difference segregation model. J. Iron Steel Res. Int. 25, 803–812 (2018). https://doi.org/10.1007/s42243-018-0117-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0117-0

Keywords

Navigation