Skip to main content
Log in

Kinetic Prediction for the Composition of Inclusions in the Molten Steel During the Electroslag Remelting

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A mathematical model coupled with the penetration theory, the ion and molecule coexistence theory, and thermodynamic equilibrium was proposed for predicting the composition evolution of inclusions in the molten steel during the electroslag remelting process. The model was used to evaluate the transformation of composition of inclusions in a plain carbon steel and the mechanism of the transformation of inclusions was accurately revealed, which was mainly the mass transfer of aluminum through steel/slag reactions. The rate of the transformation of inclusions composition was the lowest in the metal pool, while that in the slag pool was the fastest which was due to the acceleration of reactions by higher temperature and faster fluid flow. Inclusions with smaller diameter had faster transformation rate, but had less content of Al2O3 in the final composition. The size of droplet showed little influence on the transformation of composition of inclusions. When the content of Al2O3 in the slag increased from 20 to 50 wt pct, the calculated content of Al2O3 in the final inclusions increased from 79 to 90 wt pct, approximately. The low content of Al2O3 in the slag was beneficial to the removal of aluminum in the steel, while the high content of Al2O3 in the slag increased the content of total aluminum in the steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. [1] A. Mitchell, J. Szekely and J. Elliott: Electroslag refining, Iron and Steel Institute, London, 1973, pp. 48–49.

    Google Scholar 

  2. [2] G. Du, J. Li and Z. Wang: Ironmaking Steelmaking, 2018, vol. 45, pp. 919-23.

    Article  CAS  Google Scholar 

  3. D. A. R. Kay and R. J. Pomfret: J. Iron Steel Inst. London, 1971, vol. 209, pp. 962-65.

    CAS  Google Scholar 

  4. [4] W. Liu, J. Li, H. Wang and C. Shi: Steel Res. Int., 2019, vol. 90, pp.1900185.

    Article  Google Scholar 

  5. D. Y. Povolotskii, V. E. Roshchin and V. A. Golubtsov: Izvestiya Vysshikh Uchebnykh Zavedenij, 1976, pp. 57–60.

  6. [6] S.Ahmadi, H.Arabi, A.Shokuhfar and A.Rezaei: J. Mater. Sci. Technol., 2009, vol. 25, pp. 592-96.

    CAS  Google Scholar 

  7. [7] J. Reitz, B. Wietbrock, S. Richter, S. Hoffmann, G. Hirt and B. Friedrich: Adv. Eng. Mater., 2011, vol. 13, pp. 395-99.

    Article  CAS  Google Scholar 

  8. [8] S. Li, G. Cheng, Z. Miao, W. Dai, L. Chen and Z. Liu: ISIJ Int., 2018, vol. 58, pp. 1781-90.

    Article  Google Scholar 

  9. Y. Liu, Z. Zhang, G. Li, Q. Wang, L. Wang and B. Li: Steel Res. Int., 2017, vol. 88, pp. 1700058.

    Article  Google Scholar 

  10. [10] Y. Liu, Z. Zhang, G. Li, Q. Wang and B. Li: High Temp. Mater. Processes, 2019, vol. 38, pp. 207-18.

    Article  CAS  Google Scholar 

  11. S. Li, G. Cheng, Z. Miao, L. Chen, Z. Liu and C. Li: In 7th International Congress on Science and Technology of Steelmaking, ICS 2018, Venice, Italy, 2018.

  12. [12] A. Mitchell, Ironmaking Steelmaking, 1974, vol. 1, pp. 172-79.

    CAS  Google Scholar 

  13. [13] C. Shi, D. Zheng, B. Guo, J. Li and F. Jiang: Metall. Mater. Trans. B, 2018, vol. 49, pp. 3390-402.

    Article  Google Scholar 

  14. [14] X. Chen, C. Shi, H. Guo, F. Wang, H. Ren and D. Feng: Metall. Mater. Trans. B, 2012, vol. 43, pp. 1596-607.

    Article  Google Scholar 

  15. [15] C. Shi, X. Chen, H. Guo, Z. Zhu and X. Sun: Metall. Mater. Trans. B, 2013, vol. 44, pp. 378-89.

    Article  Google Scholar 

  16. [16] H. Wang, J. Li, C. Shi, Y. Qi and Y. Dai: ISIJ Int., 2019, vol. 59, pp. 828-38.

    Article  CAS  Google Scholar 

  17. [17] F. Wang, X. Chen and H. Guo: Iron Steel Technol., 2013, vol. 10, pp. 99-107.

    CAS  Google Scholar 

  18. [18] C. Shi and J. H. Park: Metall. Mater. Trans. B, 2019, vol. 50, pp. 1139-47.

    Article  Google Scholar 

  19. [19] M. Allibert, J. Wadier and A. Mitchell: Ironmaking Steelmaking, 1978, vol. 5, pp. 211-16.

    CAS  Google Scholar 

  20. [20] K. Mehrabi, M. Rahimipour and A. Shokuhfar: International Journal of Iron & Steel Society of Iran, 2005, vol. 2, pp. 37-42.

    Google Scholar 

  21. [21] C. Shi, H. Wang and J. Li: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1675-89.

    Article  Google Scholar 

  22. [22] Y. Liu, Z. Zhang, G. Li, Y. Wu, X. Wang and B. Li: Metall. Res. Technol., 2019, vol. 116, pp. 627.

    Article  CAS  Google Scholar 

  23. [23] C. Shi, X. Chen, H. Guo, Z. Zhu and H. Ren: Steel Res. Int., 2012, vol. 83, pp. 472-86.

    Article  CAS  Google Scholar 

  24. [24] Y. Dong, Z. Jiang, Y. Cao, A. Yu and D. Hou: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1315-24.

    Article  Google Scholar 

  25. [25] N. Q. Minh and T. B. King: Metall. Trans. B, 1979, vol. 10, pp. 623-29.

    Article  Google Scholar 

  26. [26] G. Hoyle: Electroslag processes: principles and practice, Applied Science Publishers Ltd., London, 1983, pp. 215–16.

    Google Scholar 

  27. M. Kato, K. Hasegawa, S. Nomura, M. Inouye: Trans. Iron Steel Inst. Jpn. 1983, vol. 23, pp. 618-27.

    Article  CAS  Google Scholar 

  28. [28] M. E. Fraser and A. Mitchell: Ironmaking Steelmaking, 1976, vol. 3, pp. 279-87.

    CAS  Google Scholar 

  29. M. E. Fraser: Mass transfer aspects of A.C. electroslag remelting (Doctoral Thesis), University of British Columbia, 1974, pp. 27–34.

  30. [30] D. Hou, Z. H. Jiang, Y. W. Dong, W. Gong, Y. L. Cao and H. B. Cao: ISIJ Int., 2017, vol. 57, pp. 1400-09.

    Article  CAS  Google Scholar 

  31. [31] D. Hou, Z.H. Jiang, Y. Dong, W. Gong, Y. L. Cao and H. Cao: ISIJ Int., 2017, vol. 57, pp. 1410-19.

    Article  CAS  Google Scholar 

  32. [32] S. Li, G.-g. Cheng, Z. Miao, L. Chen, C. Li and X. Jiang: ISIJ Int., 2017, vol. 57, pp. 2148-56.

    Article  CAS  Google Scholar 

  33. [33] Q. Ren, Y. Zhang, L. Zhang, J. Wang, Y. Chu, Y. Wang and Y. Ren, J. Mater. Res. Technol., 2020, vol. 9, pp. 5648-65.

    Article  CAS  Google Scholar 

  34. T. Wen, Q. Ren, L. Zhang, J. Wang, Y. Ren, J. Zhang, W. Yang, and A. Xu: Steel Res. Int., in press.

  35. M. Hino and K. Ito: Thermodynamic Data for Steelmaking, Tohoku University Press, Sendai; 2010, pp. 260-264.

    Google Scholar 

  36. C. Wagner: Thermodynamics of alloys, Addison-Wesley, Boston; 1962, pp. 51–52.

    Google Scholar 

  37. [37] C. H. P. Lupis and J. F. Elliott: Acta Metall., 1966, vol. 14, pp. 529-38.

    Article  CAS  Google Scholar 

  38. [38] H. Suito and R. Inoue: ISIJ Int. 1996, vol. 36, pp. 528-36.

    Article  CAS  Google Scholar 

  39. [39] J. Zhang: J. Univ. Sci. Technol. Beijing, 1986, vol. 8, pp. 1-6.

    CAS  Google Scholar 

  40. [40] X. Yang, C. Shi, M. Zhang, G. Chai and F. Wang: Metall. Mater. Trans. B, 2011, vol. 42, pp. 1150-80.

    Article  Google Scholar 

  41. [41] S. Duan, C. Li, X. Guo, H. Guo, J. Guo and W. Yang: Ironmaking Steelmaking, 2018, vol. 45, pp. 655-64.

    Article  CAS  Google Scholar 

  42. [42] A. Harada, N. Maruoka, H. Shibata and S.y. Kitamura: ISIJ Int., 2013, vol. 53, pp. 2110-17.

    Article  CAS  Google Scholar 

  43. [43] A. Harada, N. Maruoka, H. Shibata and S.y. Kitamura: ISIJ Int., 2013, vol. 53, pp. 2118-25.

    Article  CAS  Google Scholar 

  44. [44] Y. Zhang, Y. Ren and L. Zhang: Metall. Res. Technol., 2018, vol. 115, pp. 415.

    Article  CAS  Google Scholar 

  45. [45] P. V. Danckwerts: Vacuum, 1950, vol. 46, pp. 300-04.

    CAS  Google Scholar 

  46. J. Wei and A. Mitchell: Acta Metall. Sin. 1984, vol. 20, pp. 387-405.

    Google Scholar 

  47. T. Wen: University of Science and Technology, Beijing, Beijing, China, unpublished research, 2020.

  48. S. Li, G. Cheng, Z. Miao, L. Chen and X. Jiang: Int. J. Miner. Metall. Mater., 2019, vol. 26, pp. 291-300.

    Article  CAS  Google Scholar 

  49. [49] R. S. E. Schneider, M. Molnar, G. Klösch and C. Schüller: Metall. Mater. Trans. B, 2020, vol. 51, pp. 1904-11.

    Article  Google Scholar 

  50. [50] C. Liu, D. Kumar, B. A. Webler and P. C. Pistorius: Metall. Mater. Trans. B, 2020, vol. 51, pp. 529-42.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for support from the National Natural Science Foundation China (Grant Nos. U1860206, 51725402, 51874031, 51874032), the Fundamental Research Funds for the Central Universities (Grant Nos. FRF-TP-19-037A2Z, FRF-BD-20-04A), the High Steel Center (HSC) at Yanshan University, and Beijing International Center of Advanced and Intelligent Manufacturing of High Quality Steel Materials (ICSM), and the High Quality Steel Consortium (HQSC) at University of Science and Technology Beijing, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lifeng Zhang or Wen Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 20, 2020, accepted February 12, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, L., Wen, T. et al. Kinetic Prediction for the Composition of Inclusions in the Molten Steel During the Electroslag Remelting. Metall Mater Trans B 52, 1521–1531 (2021). https://doi.org/10.1007/s11663-021-02120-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02120-x

Navigation