Skip to main content
Log in

A Simple Model of the Mold Boundary Condition in Direct-Chill (DC) Casting of Aluminum Alloys

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

An accurate thermofluids model of aluminum direct-chill (DC) casting must solve the heat-transfer equations in the ingot with realistic external boundary conditions. These boundary conditions are typically separated into two zones: primary cooling, which occurs inside the water-cooled mold, and secondary cooling, where a film of water contacts the ingot surface directly. Here, a simple model for the primary cooling boundary condition of the steady-state DC casting process was developed. First, the water-cooled mold was modeled using a commercial computational fluid dynamics (CFD) package, and its effective heat-transfer coefficient was determined. To predict the air-gap formation between the ingot and mold and to predict its effect on the primary cooling, a simple density-based shrinkage model of the solidifying shell was developed and compared with a more complex three-dimensional (3-D) thermoelastic model. DC casting simulations using these two models were performed for AA3003 and AA4045 aluminum alloys at two different casting speeds. A series of experiments was also performed using a laboratory-scale rectangular DC caster to measure the thermal history and sump shape of the DC cast ingots. Comparisons between the simulations and experimental results suggested that both models provide good agreement for the liquid sump profiles and the temperature distributions within the ingot. The density-based shrinkage model, however, is significantly easier to implement in a CFD code and is more computationally efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

A, B, C, D :

thermoelastic model coefficients

C f :

empirical coefficient for nucleate boiling

C p :

specific heat at constant pressure

E :

Young’s modulus

f :

mass fraction

g :

gravitational acceleration

H :

enthalpy

H fg :

latent heat of evaporation

h :

heat-transfer coefficient

K :

conductivity

K 0 :

permeability coefficient

K μ :

permeability of mushy zone

L :

ingot cross section length

\( \hat{n} \) :

unit normal vector at solid phase

p :

pressure

q :

heat flux

Q :

water flow rate per unit perimeter

T :

temperature

u :

velocity

W :

ingot cross section width

α :

thermal expansion coefficient of solid phase

β :

thermal expansion coefficient of liquid phase

γ :

surface tension

Γ:

water flow rate

δ :

cooling-induced shrinkage

\(\epsilon\) :

strain tensor

μ:

viscosity

ν :

Poisson’s ratio

ρ :

density

σ :

stress tensor

air:

air

boil:

boiling

coh:

coherency

cont:

contact

conv:

convective

disp:

displacement

eff:

effective

ext:

external

gap:

air gap

in:

inlet

incip:

incipient boiling

l:

liquid phase

liq:

liquidus

lubr:

lubricating film

mold:

mold inner wall

ref:

reference value

s:

solid phase

sat:

water saturation point

sol:

solidus

surf:

ingot surface

wat:

water

References

  1. D.G. Eskin: Physical Metallurgy of Direct Chill Casting of Aluminum Alloys, CRC Press, Boca Raton, FL, 2008, pp. 1–17.

    Google Scholar 

  2. D.C. Weckman and P. Niessen: Can. Metall. Q., 1984, vol. 23, pp. 209–16.

    Article  Google Scholar 

  3. J.M. Reese: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 491–99.

    Article  CAS  Google Scholar 

  4. D. Mortensen: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 119–33.

    Article  CAS  Google Scholar 

  5. C.J. Vreeman, J.D. Schloz, and M.J.M. Krane: J. Heat Transf., 2002, vol. 124, pp. 947–54.

    Article  CAS  Google Scholar 

  6. J.P. Verwijs and D.C. Weckman: Metall. Trans. B, 1988, vol. 19B, pp. 201–12.

    Article  CAS  Google Scholar 

  7. J.-M. Drezet, M. Rappaz, B. Carrupt, and M. Plata: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 821–29.

    Article  CAS  Google Scholar 

  8. J.M. Drezet, M. Rappaz, G.U. Grun, and M. Gremaud: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1627–34.

    Article  CAS  Google Scholar 

  9. D.C. Weckman and P. Niessen: Metall. Trans. B, 1982, vol. 13B, pp. 593–601.

    Article  CAS  Google Scholar 

  10. S.K. Das: Appl. Therm. Eng., 1999, vol. 19, pp. 897–916.

    Article  CAS  Google Scholar 

  11. H.J. Thevik, A Mo, and T. Rusten: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 135–42.

    Article  CAS  Google Scholar 

  12. A.I.N. Korti and Y. Khadraoui: Scand. J. Metall., 2004, vol. 33, pp. 347–54.

    Article  CAS  Google Scholar 

  13. M. Trovant and S.A. Argyropoulos: Can. Metall. Q., 1998, vol. 37, pp. 185–96.

    Article  CAS  Google Scholar 

  14. J.W. Bray: ASM Handbook, vol. 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM International, Materials Park, OH, 1990, pp. 29–61.

  15. W.D. Bennon and F.P. Incropera: Int. J. Heat Mass Transf., 1987, vol. 30, pp. 2161–70.

    Article  CAS  Google Scholar 

  16. A.G. Gerber: Int. J. Heat Mass Transf., 2005, vol. 48, pp. 2722–34.

    Article  CAS  Google Scholar 

  17. Q. Du, D.G. Eskin, and L. Katgerman: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 180–89.

    Article  CAS  Google Scholar 

  18. A.V. Reddy and C. Beckermann: Metall. Mater. Trans. B, 1997, vol. 28A, pp. 479–89.

    Article  Google Scholar 

  19. ANSYS, CFX: Version 12.1, ANSYS Ltd., Canonsburg, PA, 1996–2009.

  20. T. LouLou, E.A. Artyukhin, and J.P. Bardon: Int. J. Heat Mass Transf., 1999, vol. 42, pp. 2129–42.

    Article  CAS  Google Scholar 

  21. J.-M. Drezet, M. Rappaz, B. Carrupt, and M. Plata: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3214–25.

    Article  CAS  Google Scholar 

  22. M. Vynnycky: Proc. R. Soc. A, 2009, vol. 465, pp. 1617–44.

    Article  Google Scholar 

  23. N.S. Ottosen and H. Petersson: Introduction to the Finite Element Method, Prentice Hall Europe, Harlow, U.K., 1992, pp. 251–55.

    Google Scholar 

  24. M.G. Pokorny, C.A. Monroe, C. Beckermann, Z. Zhen, and N. Hort: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3196–3207.

    Article  Google Scholar 

  25. FactSage, Version 6.1, Thermfact and GTT-Technologies, Montréal, Canada, 1976–2007.

  26. K.C. Mills: Recommended Values of Thermophysical Properties for Selected Commercial Alloys, The Materials Information Society, Materials Park, OH, 2002, pp. 244–45.

  27. W.H. McAdams: Heat Transmission, McGraw-Hill Book Company, New York, NY, 1954, pp. 244–45.

    Google Scholar 

  28. Y.S. Touloukian, ed.: Thermophysical Properties of Matter, Plenum Publishing Corp., New York, NY, 1970.

  29. W.M. Rohsenow and J.P. Harnett, ed.: Handbook of Heat Transfer, McGraw-Hill Book Company, New York, NY, 1973, pp. 13–13, 13–74.

  30. I.L. Pioro: Int. J. Heat Mass Transfer, 1999, vol. 42, pp. 2003–13.

    Article  CAS  Google Scholar 

  31. A. Stangeland, A. Mo, O. Nielsen, D. Eskin, and M. M’Hamdi: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2903–15.

    Article  CAS  Google Scholar 

  32. ANSYS; ICEM CFD, Version 12.1, SAS IP, Inc., ANSYS, Inc., Canonsburg, PA, 2009.

  33. P.A. Davidson and S.C. Flood: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 293–302, 801–08.

Download references

Acknowledgments

The authors acknowledge the financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC), Novelis Global Technology Centre (NGTC), Ontario Centres of Excellence (OCE), and Emerging Materials Knowledge (EMK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir R. Baserinia.

Additional information

Manuscript submitted May 14, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baserinia, A.R., Ng, H., Weckman, D.C. et al. A Simple Model of the Mold Boundary Condition in Direct-Chill (DC) Casting of Aluminum Alloys. Metall Mater Trans B 43, 887–901 (2012). https://doi.org/10.1007/s11663-012-9658-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-012-9658-y

Keywords

Navigation