Skip to main content
Log in

The Evolution of Element Distribution During Laser Cladding Under Static Magnetic Field

  • Brief Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The convective transport of heat and mass can be modified under an external magnetic field during the laser cladding process. The cladding of Inconel 718 powder on a 316L substrate under a static magnetic field was numerically studied. The results show that a static magnetic field has little effect on the characteristics of the temperature field, while an uneven distribution of iron concentration was obtained due to the induced Lorentz force inhibiting melt flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

\( f_{l} \), \( f_{c} \), \( f_{a} \) :

Volume fraction (1)

\(\overrightarrow{{u}_{l}}\), \(\overrightarrow{{u}_{a}}\) :

Velocity (m s1)

\( \dot{M} \) :

Powder deposition rate (kg m−3 s−1)

P :

Pressure (N m−2)

\({\overrightarrow{U}}_{lc}\), \({\overrightarrow{U}}_{la}\), \({\overrightarrow{U}}_{ca}\) :

Momentum exchange rate (kg m−2 s−2)

\({\overrightarrow{F}}_{M}\) :

Marangoni force (kg m−2 s−2)

\( C_{{{\text{lc}}}}^{i} \) :

Species exchange (kg m−3 s−1)

\({\dot{\text{C}}}^{\text{i}}\) :

Species increasing rate (kg m−3 s−1)

\( k_{l} \), \( k_{c} \),\( k_{a} \) :

Thermal conductivity (W m−1 K−1)

\(\overrightarrow{j}\) :

Induced electric current (A m−2)

\(\sigma \) :

Electric conductivity (S m−1)

\({\rho }_{l}\), \({\rho }_{c}\), \({\rho }_{a}\) :

Density (kg m−3)

t :

Time (s)

\( M_{{{\text{lc}}}} \) :

Mass transfer rate (kg m−3 s−1)

\( \overline{\overline{\tau }} _{l} ,\overline{\overline{\tau }} _{a} \) :

Stress–strain tensors (kg m−1 s−2)

\( Q_{{{\text{lc}}}} \), \( Q_{{{\text{la}}}} \), \( Q_{{{\text{ca}}}} \) :

Energy transfer (J m−3 s−1)

\( \overrightarrow {F} _{{{\text{Lorentz}}}} \) :

Induced Lorentz force (kg m−2 s−2)

\( c_{l}^{i} \),\( c_{c}^{i} \) :

Species concentration (wt pct )

\( \dot{Q}_{l} \), \( \dot{Q}_{c} \) :

Laser heat inputs (J m−3 s−1)

\( T_{l} \), \( T_{c} \), \( T_{a} \) :

Temperature (K)

\( h_{l} \), \( h_{c} \), \( h_{a} \) :

Enthalpy (J kg−1)

\( \overrightarrow {B} \) :

Magnetic field (T)

l :

Liquid phase

a :

Air phase

c :

Columnar phase

References

  1. C. Li, Z.B. Yu, J.X. Gao, J.Y. Zhao, and X. Han: Surf. Coat. Technol., 2019, vol. 357, pp. 965–77.

    Article  CAS  Google Scholar 

  2. T.V. Nghia, Y. Sen, and P.T. Anh: Opt. Laser Technol., 2018, vol. 108, pp. 480–6.

    Article  Google Scholar 

  3. L. Yang, T.B. Yu, M. Li, Y. Zhao, and J.Y. Sun: Ceram. Int., 2018, vol. 44, pp. 22538–48.

    Article  CAS  Google Scholar 

  4. A. Kao, B. Cai, P.D. Lee, and K. Pericleous: J. Cryst. Growth., 2017, vol. 457, pp. 270–4.

    Article  CAS  Google Scholar 

  5. X. Li, Y. Fautrelle, and Z. Ren: Acta Mater., 2007, vol. 55, pp. 3803–13.

    Article  CAS  Google Scholar 

  6. M. Bachmann, V. Avilov, A. Gumenyuk, and M. Rethmeier: Int. J. Therm. Sci., 2016, vol. 101, pp. 24–34.

    Article  Google Scholar 

  7. N. Kang, H. Yuan, P. Coddet, Z. Ren, C. Bernage, H. Liao, and C. Coddet: Mater. Sci. Eng. C., 2017, vol. 70, pp. 405–7.

    Article  CAS  Google Scholar 

  8. F. Liu, H. Cheng, X. Yu, G. Yang, C. Huang, X. Lin, and J. Chen: Opt. Laser Technol., 2018, vol. 99, pp. 342–50.

    Article  CAS  Google Scholar 

  9. M. Bachmann, V. Avilov, A. Gumenyuk, and M. Rethmeier: Int. J. Heat Mass Trans., 2013, vol. 60, pp. 309–21.

    Article  CAS  Google Scholar 

  10. L. Wang, J. Yao, Y. Hu, and S. Song: Appl. Surf. Sci., 2015, vol. 351, pp. 794–802.

    Article  CAS  Google Scholar 

  11. O. Velde, R. Gritzji, and R. Grundmann: Int. J. Heat Mass Tran., 2001, vol. 44, pp. 2751–62.

    Article  CAS  Google Scholar 

  12. D. Du, A. Dong, D. Shu, D. Wang, G. Zhu, B. Sun, and E.J. Lavernia: Metall. Mater. Trans. A., 2020, vol. 51A, pp. 3354–9.

    Article  Google Scholar 

  13. C. Barr, S. Da Sun, M. Easton, N. Orchowski, N. Matthews, and M. Brandt: Surf. Coat. Technol., 2018, vol. 340, pp. 126–36.

    Article  CAS  Google Scholar 

  14. H. Ge, F. Ren, J. Li, X. Han, M. Xia, and J. Li: Metall. Mater. Trans. A., 2017, vol. 48A, pp. 1139–50.

    Article  Google Scholar 

  15. H. Ge, H. Xu, J. Wang, J. Li, and J. Yao: Int. J. Heat Mass Trans., 2021, vol. 170, p. 120975.

    Article  CAS  Google Scholar 

  16. F. Ren, H. Ge, D. Cai, J. Li, Q. Hu, M. Xia, and J. Li: Metall. Mater. Trans. A., 2018, vol. 49A, pp. 6243–54.

    Article  Google Scholar 

  17. W. Gao, S. Zhao, Y. Wang, Z. Zhang, F. Liu, and X. Lin: Int. J. Heat Mass Trans., 2016, vol. 92, pp. 83–90.

    Article  CAS  Google Scholar 

  18. Y. Jiang, Y. Cheng, X. Zhang, J. Yang, X. Yang, and Z. Cheng: Optik., 2020, vol. 203, p. 164044.

    Article  CAS  Google Scholar 

  19. C. Vives and C. Perry: Int. J. Heat Mass Trans., 1987, vol. 30, pp. 479–96.

    Article  CAS  Google Scholar 

  20. B. Cai, A. Kao, E. Boller, O.V. Magdysyuk, R.C. Atwood, N.T. Vo, K. Pericleous, and P.D. Lee: Acta Mater., 2020, vol. 196, pp. 200–9.

    Article  CAS  Google Scholar 

  21. Z. Gan, G. Yu, X. He, and S. Li: Int. J. Heat Mass Trans., 2017, vol. 104, pp. 28–38.

    Article  CAS  Google Scholar 

Download references

This work is sponsored by the National Natural Science Foundation of China (Grant No. 52035014, 51804274) and Fundamental Research Funds for the Provincial Universities of Zhejiang (RF-C2019003). The authors would also like to especially appreciate Prof. Jun Li from Shanghai Jiao Tong University for his kind help in methodology.

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Yao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 26, 2021, accepted November 8, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, H., Fang, H., Zhang, C. et al. The Evolution of Element Distribution During Laser Cladding Under Static Magnetic Field. Metall Mater Trans A 53, 370–376 (2022). https://doi.org/10.1007/s11661-021-06540-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06540-x

Navigation