Skip to main content

Advertisement

Log in

Grain Refinement Affected Machinability in Commercial Pure Titanium

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Despite the high utilization of commercial pure titanium in various applications, its performance in the modern engineering industry has created a new challenge due to its low mechanical properties and poor machinability compared to its alloying conditions. In this paper, equal channel angular pressing (ECAP) as a well-known severe plastic deformation approach was applied to the commercial pure (CP) titanium at the elevated temperature up to six passes. Although the initial sample mainly contains high-angle grain boundaries (HAGBs), some low-angle grain boundaries (LAGBs) are introduced by imposing four ECAP passes and the fraction of LAGBs is considerably increased up to 55 pct. By applying for additional ECAP passes and imposing more plastic strains, more amount of them is transformed into the HAGBs, exceeding 56 pct. It was found that the yield strength and hardness of the six-pass ECAPed sample reached 314 MPa and 249 Hv, indicating 96 and 51 pct increments as compared to the as-received condition, respectively, due to the considerable grain refinement after the process. However, the capability of processed titanium for further deformation was strictly restricted. The obtained moderate ductility of the sample after the processing was related to the decrease in the size and depth of the generated dimples in the fractured surface. The machining results showed that improvement of strength using the grain refinement led to a considerable reduction of originated cutting forces due to the reduction of friction coefficient and decrease in the tool wear rate. The mentioned two factors, as well as the discontinuous short chips, eventually result in a better surface finish of the ECAP-processed CP titanium.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article

References

  1. U. Kumar, P. Senthil, Mater. Today Proc. (2019). https://doi.org/10.1016/j.matpr.2019.09.121.

    Article  Google Scholar 

  2. M. Kuttolamadom, J. Jones, L. Mears, J. Von Oehsen, T. Kurfess, J. Ziegert, J. Manuf. Syst. 43 (2017) 235–47. https://doi.org/10.1016/j.jmsy.2017.02.014.

    Article  Google Scholar 

  3. N. Singh, P.S. Bharti, Mater. Today Proc. (2019). https://doi.org/10.1016/j.matpr.2019.08.235.

    Article  Google Scholar 

  4. Q. Chen, G.A. Thouas, Mater. Sci. Eng. 87 (2015) 1–57. https://doi.org/10.1016/j.mser.2014.10.001.

    Article  Google Scholar 

  5. M. Morinaga (2019) Quant Approach Alloy Des. 24 77–94. https://doi.org/10.1016/b978-0-12-814706-1.00005-4.

    Article  Google Scholar 

  6. N. Hansen, Scr. Mater. 51 (2004) 801–06. https://doi.org/10.1016/j.scriptamat.2004.06.002.

    Article  CAS  Google Scholar 

  7. S.W. Choi, C.L. Li, J.W. Won, J.T. Yeom, Y.S. Choi, J.K. Hong, Mater. Sci. Eng. A 764 (2019) 138211. https://doi.org/10.1016/j.msea.2019.138211.

    Article  CAS  Google Scholar 

  8. Y. Estrin, R. Lapovok, A.E. Medvedev, C. Kasper, E. Ivanova, T.C. Lowe, Mechanical performance and cell response of pure titanium with ultrafine-grained structure produced by severe plastic deformation, Elsevier Inc., 2018. https://doi.org/10.1016/B978-0-12-812456-7.00019-6.

  9. M. Ebrahimi, B. Rajabifar, F. Djavanroodi, J. Strain Anal. Eng. Des. 48 (2013) 395–404. https://doi.org/10.1177/0309324713489297.

    Article  Google Scholar 

  10. M.M. Abramova, N. A. Enikeev, R.Z. Valiev, A. Etienne, B. Radiguet, Y. Ivanisenko, X. Sauvage, Mater. Lett. 136 (2014) 349–52. https://doi.org/10.1016/j.matlet.2014.07.188.

    Article  CAS  Google Scholar 

  11. M. Ebrahimi, F. Djavanroodi, Prog. Nat. Sci. Mater. Int. 24 (2014) 68–74. https://doi.org/10.1016/j.pnsc.2014.01.013.

    Article  CAS  Google Scholar 

  12. M. Ebrahimi, Metall. Mater. Trans. A 48 (2017) 6126–6134. https://doi.org/10.1007/s11661-017-4375-4.

    Article  CAS  Google Scholar 

  13. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Scr. Mater. 39 (1998) 1221–27. https://doi.org/10.1016/S1359-6462(98)00302-9.

    Article  CAS  Google Scholar 

  14. E. Bagherpour, F. Qods, R. Ebrahimi, H. Miyamoto, Mater. Sci. Eng. A 679 (2017) 465–475. https://doi.org/10.1016/j.msea.2016.10.068.

    Article  CAS  Google Scholar 

  15. M. Ebrahimi, S. Attarilar, F. Djavanroodi, C. Gode, H.S. Kim, Mater. Des. 63 (2014) 531–537. https://doi.org/10.1016/j.matdes.2014.06.043.

    Article  CAS  Google Scholar 

  16. C. Wang, F. Li, Q. Li, L. Wang, Mater. Sci. Eng. A 548 (2012) 19–26. https://doi.org/10.1016/j.msea.2012.03.055.

    Article  CAS  Google Scholar 

  17. W.Q. Cao, A. Godfrey, Q. Liu, Mater. Sci. Eng. A 361 (2003) 9–14. https://doi.org/10.1016/S0921-5093(03)00055-8.

    Article  CAS  Google Scholar 

  18. M. Ebrahimi, M.A. Par, J. Alloys Compd. 781 (2019) 1074–1090. https://doi.org/10.1016/j.jallcom.2018.12.083.

    Article  CAS  Google Scholar 

  19. I. Ansarian, M.H. Shaeri, M. Ebrahimi, P. Minárik, K. Bartha, J. Alloys Compd. 776 (2019) 83–95. https://doi.org/10.1016/j.jallcom.2018.10.196.

    Article  CAS  Google Scholar 

  20. G. Faraji, H.S. Kim, H.T. Kashi, Sev. Plast. Deform. (2018) 20: 19–36. https://doi.org/10.1016/b978-0-12-813518-1.00001-1.

    Article  Google Scholar 

  21. X. Sauvage, G. Wilde, S. V Divinski, Z. Horita, R.Z. Valiev, Mater. Sci. Eng. A 540 (2012) 1–12. https://doi.org/10.1016/j.msea.2012.01.080.

    Article  CAS  Google Scholar 

  22. T.G. Langdon, Acta Mater. 61 (2013) 7035–7059. https://doi.org/10.1016/j.actamat.2013.08.018.

    Article  CAS  Google Scholar 

  23. Y. Estrin, A. Vinogradov, Acta Mater. 61 (2013) 782–817. https://doi.org/10.1016/j.actamat.2012.10.038.

    Article  CAS  Google Scholar 

  24. K. Edalati, Z. Horita, Mater. Sci. Eng. A 652 (2016) 325–352. https://doi.org/10.1016/j.msea.2015.11.074.

    Article  CAS  Google Scholar 

  25. R.Z. Valiev, T.G. Langdon, Prog. Mater. Sci. 51 (2006) 881–981. https://doi.org/10.1016/j.pmatsci.2006.02.003.

    Article  CAS  Google Scholar 

  26. V. V. Polyakova, I.P. Semenova, A. V. Polyakov, D.K. Magomedova, Y. Huang, T.G. Langdon, Mater. Lett. 190 (2017) 256–259. https://doi.org/10.1016/j.matlet.2016.12.083.

    Article  CAS  Google Scholar 

  27. K. Bartha, A. Veverková, J. Stráský, J. Veselý, P. Minárik, C.A. Corrêa, V. Polyakova, I. Semenova, M. Janeček, Mater. Today Commun. (2020). https://doi.org/10.1016/j.mtcomm.2019.100811.

    Article  Google Scholar 

  28. Y. Han, J. Li, G. Huang, Y. Lv, X. Shao, W. Lu, D. Zhang, Mater. Des. 75 (2015) 113–119. https://doi.org/10.1016/j.matdes.2015.03.018.

    Article  CAS  Google Scholar 

  29. K.M. Agarwal, R.K. Tyagi, A. Singhal, D. Bhatia, Mater. Sci. Energy Technol. 3 (2020) 921–927. https://doi.org/10.1016/j.mset.2020.11.002.

    Article  CAS  Google Scholar 

  30. Y. Gu, A. Ma, J. Jiang, Y. Yuan, H. Wu, Mater. Charact. 168 (2020) 110513. https://doi.org/10.1016/j.matchar.2020.110513.

    Article  CAS  Google Scholar 

  31. X. Hu, X. Anfn, B. Feng, D. Kong, P. Liu, R. Li, Y. Zhang, G. Li, Y. Li, Solid State Sci. 103 (2020) 106191. https://doi.org/10.1016/j.solidstatesciences.2020.106191

    Article  CAS  Google Scholar 

  32. M. Ebrahimi, F. Djavanroodi, C. Gode, K.M. Nikbin, Revue de Métallurgie, 348 (2013) 341–348. https://doi.org/10.1051/metal/2013077.

    Article  CAS  Google Scholar 

  33. F. Djavanroodi, M. Ebrahimi, Mater. Sci. Eng. A 527 (2010) 1230–1235. https://doi.org/10.1016/j.msea.2009.09.052.

    Article  CAS  Google Scholar 

  34. P. Huang, H. Li, W. Le Zhu, H. Wang, G. Zhang, X. Wu, S. To, Z. Zhu, J. Clean. Prod. 243 (2020) 118526. https://doi.org/10.1016/j.jclepro.2019.118526.

    Article  CAS  Google Scholar 

  35. S. Swain, I. Panigrahi, A.K. Sahoo, A. Panda, Mater. Today Proc. 18 (2019) 3539–3545. https://doi.org/10.1016/j.matpr.2019.07.284.

    Article  Google Scholar 

  36. C.L. He, W.J. Zong, J.J. Zhang, Int. J. Mach. Tools Manuf. 129 (2018) 15–26. https://doi.org/10.1016/j.ijmachtools.2018.02.001.

    Article  Google Scholar 

  37. C.J. Tzeng, Y.H. Lin, Y.K. Yang, M.C. Jeng, J. Mater. Process. Technol. 209 (2009) 2753–2759. https://doi.org/10.1016/j.jmatprotec.2008.06.046.

    Article  CAS  Google Scholar 

  38. G. Gaurav, A. Sharma, G.S. Dangayach, M.L. Meena, Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.10.217.

    Article  Google Scholar 

  39. V. Sharma, P.M. Pandey, J. Clean. Prod. 137 (2016) 701–715. https://doi.org/10.1016/j.jclepro.2016.07.138.

    Article  Google Scholar 

  40. V.S. Sharma, M. Dogra, N.M. Suri, Int. J. Mach. Tools Manuf. 49 (2009) 435–453. https://doi.org/10.1016/j.ijmachtools.2008.12.010.

    Article  Google Scholar 

  41. P. Ranjan, S.S. Hiremath, J. Manuf. Process. 43 (2019) 47–73. https://doi.org/10.1016/j.jmapro.2019.04.011.

    Article  Google Scholar 

  42. C. Agrawal, J. Wadhwa, A. Pitroda, C.I. Pruncu, M. Sarikaya, N. Khanna, Tribol. Int. 153 (2021) 106597. https://doi.org/10.1016/j.triboint.2020.106597.

    Article  CAS  Google Scholar 

  43. R. Thirumalai, K. Techato, M. Chandrasekaran, K. Venkatapathy, M. Seenivasan, Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.07.213.

    Article  Google Scholar 

  44. E.O. Ezugwu, J. Bonney, Y. Yamane, J. Mater. Process. Technol. 134 (2003) 233–253. https://doi.org/10.1016/S0924-0136(02)01042-7.

    Article  CAS  Google Scholar 

  45. E.O. Ezugwu, Z.M. Wang, J. Mater. Process. Technol. 68 (1997) 262–274. https://doi.org/10.1016/S0924-0136(96)00030-1.

    Article  Google Scholar 

  46. A.K. Srivastava, S.P. Dwivedi, N.K. Maurya, N. Kumar, Mater. Today Proc. 25 (2019) 626–629. https://doi.org/10.1016/j.matpr.2019.07.379.

    Article  CAS  Google Scholar 

  47. E.O. Ezugwu, Int. J. Mach. Tools Manuf. 45 (2005) 1353–1367. https://doi.org/10.1016/j.ijmachtools.2005.02.003.

    Article  Google Scholar 

  48. S.I. Jaffery, P.T. Mativenga, Int. J. Adv. Manuf. Technol. 40 (2009) 687–696. https://doi.org/10.1007/s00170-008-1393-9.

    Article  Google Scholar 

  49. O. Hatt, P. Crawforth, M. Jackson, Wear 374–375 (2017) 15–20. https://doi.org/10.1016/j.wear.2016.12.036.

    Article  CAS  Google Scholar 

  50. R. Lindvall, F. Lenrick, H. Persson, R.M. Saoubi, J. Ståhl, Wear 454–455 (2020) 203329. https://doi.org/10.1016/j.wear.2020.203329.

    Article  CAS  Google Scholar 

  51. P.R. Guru, F. Khan, S.K. Panigrahi, G.D.J. Ram, J. Manuf. Process. 18 (2015) 67–74. https://doi.org/10.1016/j.jmapro.2015.01.005.

    Article  Google Scholar 

  52. R. Lapovok, A. Molotnikov, Y. Levin, A. Bandaranayake, Y. Estrin, J. Mater. Sci. 47 (2012) 4589–4594. https://doi.org/10.1007/s10853-012-6320-7.

    Article  CAS  Google Scholar 

  53. M. Furukawa, Z. Horita, T.G. Langdon, Sci. Eng. A 332 (2002) 97–109. https://doi.org/10.1016/S0921-5093(01)01716-6.

    Article  Google Scholar 

  54. A. Rollett, F. Humphreys, G.S. Rohrer, M. Hatherly, Recrystallization and Related Annealing Phenomena: Second Edition, 2004. https://doi.org/10.1016/B978-0-08-044164-1.X5000-2.

    Article  Google Scholar 

  55. S. Attarilar, M.T. Salehi, K.J. Al-Fadhalah, F. Djavanroodi, M. Mozafari, PLoS ONE. 14 (2019) 1–18. https://doi.org/10.1371/journal.pone.0221491.

    Article  CAS  Google Scholar 

  56. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Prog. Mater. Sci. 60 (2014) 130–207. https://doi.org/10.1016/j.pmatsci.2013.09.002.

    Article  CAS  Google Scholar 

  57. S. Attarilar, M.-T. Salehi, F. Djavanroodi, Metall. Res. Technol. 116 (2019) 408. https://doi.org/10.1051/metal/2018135.

    Article  CAS  Google Scholar 

  58. T.G. Langdon, Mater. Sci. Eng. A 462 (2007) 3–11. https://doi.org/10.1016/j.msea.2006.02.473.

    Article  CAS  Google Scholar 

  59. P. Luo, D.T. Mcdonald, W. Xu, S. Palanisamy, M.S. Dargusch, K. Xia, Scr. Mater. 66 (2012) 785–788. https://doi.org/10.1016/j.scriptamat.2012.02.008.

    Article  CAS  Google Scholar 

  60. V. V. Stolyarov, Y.T. Zhu, T.C. Lowe, R.K. Islamgaliev, R.Z. Valiev, Nanostructured Mater. 11 (1999) 947–954. https://doi.org/10.1016/S0965-9773(99)00384-0.

    Article  CAS  Google Scholar 

  61. V. V. Stolyarov, Y. T. Zhu, I. V. Alexandrov, T.C. Lowe, R.Z. Valiev, Mater. Sci. Eng. A 299 (2001) 59–67. https://doi.org/10.1016/S0921-5093(00)01411-8.

    Article  Google Scholar 

  62. M.S. Rao, U. Chakkingal, T. Raghu, Trans. Indian Inst. Met. 66 (2013) 357–362. https://doi.org/10.1007/s12666-013-0280-8.

    Article  CAS  Google Scholar 

  63. M.J. Qarni, G. Sivaswamy, A. Rosochowski, S. Boczkal, Mater. Des. 122 (2017) 385–402. https://doi.org/10.1016/j.matdes.2017.03.015.

    Article  CAS  Google Scholar 

  64. K. Hajizadeh, B. Eghbali, K. Topolski, K.J. Kurzydlowski, Mater. Chem. Phys. 143 (2014) 1032–1038. https://doi.org/10.1016/j.matchemphys.2013.11.001.

    Article  CAS  Google Scholar 

  65. V. Latysh, G. Krallics, I. Alexandrov, A. Fodor Curr. Appl. Phys. 6 (2006) 262–266. https://doi.org/10.1016/j.cap.2005.07.053.

    Article  Google Scholar 

  66. D.H. Kang, T.W. Kim, Mater. Des. 31 (2010) S54–S60. https://doi.org/10.1016/j.matdes.2010.01.004.

    Article  CAS  Google Scholar 

  67. Y.G. Ko, D.H. Shin, K.T. Park, C.S. Lee, An analysis of the strain hardening behavior of ultra-fine grain pure titanium, Scr. Mater. 54 (2006) 1785–1789. https://doi.org/10.1016/j.scriptamat.2006.01.034.

    Article  CAS  Google Scholar 

  68. G. Purcek, G.G. Yapici, I. Karaman, H.J. Maier, Mater. Sci. Eng. A 528 (2011) 2303–2308. https://doi.org/10.1016/j.msea.2010.11.021.

    Article  CAS  Google Scholar 

  69. X. Zhao, X. Yang, X. Liu, X. Wang, T.G. Langdon, Mater. Sci. Eng. AS 527 (2010) 6335–6339. https://doi.org/10.1016/j.msea.2010.06.049.

    Article  CAS  Google Scholar 

  70. K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, J.M. Schoenung, Acta Mater. 62 (2014) 141–155. https://doi.org/10.1016/j.actamat.2013.09.042.

    Article  CAS  Google Scholar 

  71. S. Kalpakjian, S. Steven, Manufacturing processes for engineering materials, 6th ed., Pearson, 2016.

  72. A.R. Zareena, M. Rahman, Y.S. Wong, J. Manuf. Sci. Eng. Trans. ASME. 127 (2005) 277–279. https://doi.org/10.1115/1.1852570.

    Article  Google Scholar 

  73. K.R. Zoya, J. Mater. Process. Technol. 100 (2000) 80–86. https://doi.org/10.1016/j.jmatprotec.2011.10.014.

    Article  CAS  Google Scholar 

  74. Y. Huang, T.G. Dawson, Wear. 258 (2005) 1455–1461. https://doi.org/10.1016/j.wear.2004.08.010.

    Article  CAS  Google Scholar 

  75. Y. Huang, Y.K. Chou, S.Y. Liang, Int. J. Adv. Manuf. Technol. 35 (2007) 443–453. https://doi.org/10.1007/s00170-006-0737-6.

    Article  Google Scholar 

  76. O. V. Gendelman, M. Shapiro, Y. Estrin, R.J. Hellmig, S. Lekhtmakher, Mater. Sci. Eng. A. 434 (2006) 88–94. https://doi.org/10.1016/j.msea.2006.06.091.

    Article  CAS  Google Scholar 

  77. H.A. Abdel-Aal, M. Nouari, M. El Mansori, Tribol. Int. 42 (2009) 359–372. https://doi.org/10.1016/j.triboint.2008.07.005.

    Article  CAS  Google Scholar 

  78. F.A. Guo, K.Y. Zhu, N. Trannoy, J. Lu, Thermochim. Acta. 419 (2004) 239–246. https://doi.org/10.1016/j.tca.2004.02.018.

    Article  CAS  Google Scholar 

  79. R. Lapovok, L.S. Tóth, A. Molinari, Y. Estrin, J. Mech. Phys. Solids. 57 (2009) 122–136. https://doi.org/10.1016/j.jmps.2008.09.012.

    Article  CAS  Google Scholar 

  80. A. Jawaid, C.H. Che-Haron, A. Abdullah, J. Mater. Process. Technol. 92–93 (1999) 329–334. https://doi.org/10.1016/S0924-0136(99)00246-0.

    Article  Google Scholar 

Download references

Acknowledgments

The paper is published as a part of research project supported by the University of Maragheh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ebrahimi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 24, 2020; accepted January 14, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, M., Attarilar, S. Grain Refinement Affected Machinability in Commercial Pure Titanium. Metall Mater Trans A 52, 1282–1292 (2021). https://doi.org/10.1007/s11661-021-06161-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06161-4

Navigation