Skip to main content
Log in

Mechanical Behaviors of Ultrafine-Grained Ti-6Al-4V Alloy During Compression at Various Strain Rates

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ultrafine-grained (UFG) Ti-6Al-4V alloy with average grain sizes of 305, 430, and 669 nm was fabricated by high-energy ball-milling and spark plasma sintering. The mechanical behaviors of consolidated titanium alloy with different grain sizes were studied under uniaxial compression at the quasi-static strain rate of 1 × 10−3 s−1 and high strain rates ranging from 0.5 × 103 to 2.9 × 103 s−1. Shear bands can be observed in specimens tested under quasi-static and dynamic condition. It is discovered that when the grain size decreases, the flow stress increases and shear band instability takes place at lower strains. The flow stresses of UFG titanium alloy with different grain sizes demonstrate similar dependence on the strain rate when the strain rate ranges from 1 × 10−3 to 0.5 × 103 s−1. However, the strain rate sensitivity m dramatically increases at higher strain rates and is reduced with the decrease of grain size. It is considered that the propensity for adiabatic shear banding \( \chi_{\text{ASB}} \) during dynamic compression is increased with the reduction of grain size because of the improved yield strength as well as the diminished strain rate sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. 1. M.A. Meyers, A. Mishra, and D.J. Benson: Prog. Mater. Sci., 2006, vol. 51, pp. 427-556.

    Article  CAS  Google Scholar 

  2. 2. K.S. Kumar, H.V. Swygenhoven, and S. Suresh: Acta. Mater., 2003, vol. 51, 5743-5774.

    Article  CAS  Google Scholar 

  3. 3. Q. Wei, L. Kecskes, T. Jiao, K.T. Hartwig, K.T. Ramesh, and E. Ma: Acta Mater., 2004, vol. 52, pp. 1859-1869.

    Article  CAS  Google Scholar 

  4. 4. P. Q. La, J. Q. Ma, Y. T. Zhu, J. Yang, W. M. Liu, Q. J. Xue, and R. Z. Valiev: Acta Materialia., 2005, vol. 53, pp. 5167-5173.

    Article  CAS  Google Scholar 

  5. 5. W. J. Kim, C. Y. Hyun, and H. K. Kim: Scripta Materialia., 2006, vol. 54, pp. 1745-1750.

    Article  CAS  Google Scholar 

  6. 6. J. K. Fan, H. C. Kou, Y. D. Zhang, L. Germain, K. Hua, L. Y. Tang, C. Esling, and J. S. Li: J. Alloys Compd., 2019, vol. 770, pp. 183-193.

    Article  CAS  Google Scholar 

  7. 7. J. L. Sun, P. W. Trimby, X. Si, X. Z. Liao, N. R. Tao, and J. T. Wang: Scripta Materialia., 2013, vol. 68, pp. 475-478.

    Article  CAS  Google Scholar 

  8. 8. Y. Yang, X.M. Li, X.L. Tong, Q.M. Zhang, and C.Y. Xu: Mater. Sci. Eng. A., 2011, vol. 528, pp. 3130-3133.

    Article  Google Scholar 

  9. 9. B.F. Wang, and Y. Yang: Mater. Sci. Eng. A., 2008, vol. 473, pp. 306-311.

    Article  Google Scholar 

  10. 10. J.L. Sun, P.W. Trimby, F.K. Yan, X.Z. Liao, N.R. Tao, and J.T. Wang: Acta. Mater., 2014, vol. 79, pp. 47-58.

    Article  CAS  Google Scholar 

  11. 11. R.L. Woodward: Metall. Trans. A., 1979, vol. 10A, pp. 569-573.

    Article  CAS  Google Scholar 

  12. 12. Y. Me-bar, and D. Shechtman: Mater. Sci. Eng., 1983, vol. 58, pp. 181-188.

    Article  Google Scholar 

  13. 13. H.A. Grebe, H.R. Pak, and M.A. Meyers: Metall. Trans. A., 1985, vol. 16A, pp. 761-775.

    Article  CAS  Google Scholar 

  14. 14. M.A. Meyers, and H.R. Pak: Acta. Metall., 1986, vol. 34, pp. 2493-2499.

    Article  CAS  Google Scholar 

  15. 15. D. Jia, Y.M. Wang, K.T. Ramesh, E. Ma, Y.T. Zhu, and R.Z. Valiev: Appl. Phys. Lett., 2001, vol. 79, pp. 611.

    Article  CAS  Google Scholar 

  16. 16. F. Wang, B. Li, T.T. Gao, P. Huang, K.W. Xu, and T.J. Lu, Surf. Coat. Tech., 2013, vol. 228, pp. S254-S256.

    Article  CAS  Google Scholar 

  17. 17. S.X. Zhang, Y.C. Wang, A.P. Zhilyaev, E. Korznikova, S. Li, G.I. Raab, and T.G. Langdon, Mater. Sci. Eng. A., 2015, vol. 645, pp. 311-317.

    Article  CAS  Google Scholar 

  18. 18. Z. Li, B.F. Wang, S. Zhao, R.Z. Valiev, K.S. Vecchio, and M.A. Meyers, Acta Mater., 2017, vol. 125, pp. 210-218.

    Article  CAS  Google Scholar 

  19. 19. I.P. Semenova, G.I. Raab, L.R. Saitova, and R.Z. Valiev: Mater. Sci. Eng. A., 2004, vol. 387-389, pp. 805-808.

    Article  Google Scholar 

  20. 20. T.F. Zhou, J.J. Wu, J.T. Che, Y. Wang, X.B. Wang: Int. J Impact Eng., 2017, vol. 109, pp. 167-177.

    Article  Google Scholar 

  21. 21. Q. Xue, M.A. Meyers, and V.F. Nesterenko: Acta Mater., 2002, vol. 50, pp. 575-596.

    Article  CAS  Google Scholar 

  22. 22. J. Zhang, and Y. Wang: Mater. Lett., 2014, vol. 124, pp. 113-116.

    Article  CAS  Google Scholar 

  23. 23. Y. Wang, D.L. Lin, Y.X. Zhou, Y.M. Xia, and C.C. Law: Mater. Lett., 1999, vol. 40, pp. 140-145.

    Article  CAS  Google Scholar 

  24. 24. D. Jia, K.T. Ramesh, E. Ma, L. Lu, and K. Lu: Scr. Mater., 2001, vol. 45, pp. 613-620.

    Article  CAS  Google Scholar 

  25. 25. D. Jia, K.T. Ramesh, and E. Ma: Acta. Mater., 2003, vol. 51, pp. 3495-3509.

    Article  CAS  Google Scholar 

  26. 26. R.J. Asaro, and S. Suresh: Acta. Mater., 2005, vol. 53, pp. 3369-3382.

    Article  CAS  Google Scholar 

  27. 27. H. Conrad In: V.F. Zackey (Ed.), High strength materials, Wiley, New York 1965.

    Google Scholar 

  28. 28. S.C. Liao, and J. Duffy: J. Mech. Phys. Solids., 1998, vol. 46, pp. 2201-2231.

    Article  CAS  Google Scholar 

  29. 29. M.A. Meyers, V.F. Nesterenko, J.C. LaSalvia, and Q. Xue: Mater. Sci. Eng. A., 2001, vol. 317, pp. 204-225

    Article  Google Scholar 

  30. 30. B.F. Wang, J. Li, J.Y. Sun, X.Y. Wang, and Z.L. Liu, Mater. Sci. Eng. A., 2014, vol. 612, pp. 227-235.

    Article  Google Scholar 

  31. 31. G.A. Li, L. Zhen, C. Lin, R.S. Gao, X. Tan, and C.Y. Xu: Mater. Sci. Eng. A., 2005, vol. 395, pp. 98-101.

    Article  Google Scholar 

  32. 32. N. Ranc, L. Taravella, V. Pina, and P. Herve, Mech. Mater., 2008, vol. 40, pp. 255-270.

    Article  Google Scholar 

  33. 33. T.W. Wright, The Physics and Mathematics of Adiabatic Shear Bands, Cambridge Press, Cambridge 2002.

    Google Scholar 

  34. 34. M.A. Meyers, G. Subhash, B.K. Kad, and L. Prasad: Mech. Mater., 1994, vol. 17, pp. 175-193

    Article  Google Scholar 

  35. 35. X.Q. Liu, C.W. Tan, J. Zhang, F.C. Wang, and H.N. Cai: Int. J. Impact. Eng. 2009, vol. 36, pp. 1143-1149.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51104066), Guangdong Provincial Foundation of Natural Science (Grant No. 2016A030313483), Guangdong Provincial Project for Science and Technology (Grant Nos. 2015A020214008 and 2015A010105011), and Science and Technology Research Project of Guangzhou (Grant No. 201505040925029)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Long.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 23, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, Y., Zhang, W., Peng, L. et al. Mechanical Behaviors of Ultrafine-Grained Ti-6Al-4V Alloy During Compression at Various Strain Rates. Metall Mater Trans A 51, 4765–4776 (2020). https://doi.org/10.1007/s11661-020-05895-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05895-x

Navigation