Skip to main content
Log in

Texture Evolution of a 2.8 Wt Pct Si Non-oriented Electrical Steel and the Elimination of the 〈111〉//ND Texture

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A 2.8 wt pct Si non-oriented electrical steel was thermomechanically processed using conventional hot rolling, hot band annealing, cold rolling and final annealing routes. The evolution of texture during these processes was investigated using electron backscatter diffraction (EBSD) techniques. The final annealing was conducted at 750 °C for various times (10 to 120 minutes), and it was found that by simply changing the annealing time, the texture shows significantly different features, i.e. depending on the annealing time, the Goss ({011}〈100〉), the θ-fiber (〈001〉//normal direction, ND) or the γ-fiber (〈111〉//ND) may dominate the texture. Annealing for 60 or 90 minutes can essentially eliminate the magnetically unfavorable 〈111〉//ND texture while promoting the desired 〈001〉//ND texture. On the other hand, annealing at the same temperature for 30 or 120 minutes, the 〈111〉//ND texture is strengthened and the favorable 〈001〉//ND texture is weakened. The formation of the typical textures observed in each process was examined with respect to known mechanisms existing in the literature. The formation of the various textures during annealing at different times was discussed against the oriented growth theory based on a statistic analysis of the grain boundary misorientation and grain size. It is seen that during annealing at different times, the grain boundary character (e.g. mobility) and the grain size may determine the growth of certain orientations, which give rise to the different textures after annealing for different times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Moses AAJ: IEE Proc. Part A. 1990, vol. 137, pp. 233–245.

    Google Scholar 

  2. G. Lyudkovsky, P.K. Rastogi and M. Bala: J. Metals, 1986, vol.38, pp.18-26.

    Google Scholar 

  3. M. Mehdi, Y. He, E. J. Hilinski, & A. Edrisy: J. Magn. Magn. Mater., 2017, vol. 429, pp.148-160.

    Article  Google Scholar 

  4. He, Y. and E.J. Hilinski: J. Magn. Magn. Mater., 2016. vol. 405, pp. 337-352.

    Article  Google Scholar 

  5. A. Honda, B. Fukuda, I. Ohyama, and Y. Mine: J. Mater. Eng, 1990, vol. 12, pp. 41-45.

    Article  Google Scholar 

  6. L. Kestens and S. Jacobs: Texture, Stress, and Microstructure 2008, vol. 2008, pp. 1-9.

    Article  Google Scholar 

  7. M. Shimanaka, Y. Ito, K. Matsumura, and B. Fukuda: J. Magn. and Magn. Mat., 1982, vol. 26, pp. 57–64.

    Article  Google Scholar 

  8. R. PremKumar, I. Samajdar, N. Viswanathan, V. Singal, V. Seshadri: J. Magn. Magn. Mater., 2003, vol. 264, pp. 75–85.

    Article  Google Scholar 

  9. J.T. Park and J.A. Szpunar: ISIJ Int., 2005, vol. 45, pp. 743–749.

    Article  Google Scholar 

  10. F. J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, 2004.

    Google Scholar 

  11. B. Hutchinson and E. Nes: Mater. Sci. Forum, 1992, vol. 94, pp. 385-390.

    Article  Google Scholar 

  12. P. Balke: Doctor of Philosophy, Groningen, 2002.

  13. N. Rajmohan and J. A. Szpunar: Scr. Mater., 2001, vol. 44, pp. 2387-2392.

    Article  Google Scholar 

  14. J. Harase, R. Shimizu, and D. J. Dingley: Acta Metall. Mater., 1991, vol. 39, pp. 763–770.

    Article  Google Scholar 

  15. P. Lin, G. Palumbo, J. Harase, and K. T. Aust: Acta Mater., 1996, vol. 44, pp. 4677-4683.

    Article  Google Scholar 

  16. Y. Hayakawa and J. A. Szpunar: Acta Mater., 1997. vol. 45, pp. 4713-4720.

    Article  Google Scholar 

  17. N. Rajmohan, J. A. Szpunar, and Y. Hayakawa: Acta Mater., 1999, vol. 47, pp. 2999-3008.

    Article  Google Scholar 

  18. Fiorillo F, Bertotti G, Appino C, Pasquale M (2016) Soft magnetic materials. In: Peterca M (ed) Wiley Encyclopedia of Electrical and Electronics Engineering. Wiley, Hoboken

    Google Scholar 

  19. K. M. Lee, M. Y. Huh, H. J. Lee, J. T. Park, J. S. Kim, E. J. Shin, and O. Engler: J. Magn. Magn. Mater., 2015, vol. 396, pp. 53-64.

    Article  Google Scholar 

  20. De Dafe SSF, da Costa Paolinelli S, Cota AB (2011) J. Magn. Magn. Mater. 323:3234–3238.

    Article  Google Scholar 

  21. J. Wang, J. Li, X.-F. Wang, J.-J. Tian, C.-H. Zhang, S.-G. Zhang: J. Iron Steel Res. Int. 2010, vol. 17, pp. 54–61.

    Article  Google Scholar 

  22. H. Hu: Texture, 1974, vol. 1, p. 233.

    Article  Google Scholar 

  23. D. Raabe and K. Lücke: Mater. Sci. Technol., 1993, vol. 9, pp. 302–12.

    Article  Google Scholar 

  24. M. Hölscher, D. Raabe, and K. Lücke: Acta Metall. Mater., 1994, vol. 42, pp. 879–886.

    Article  Google Scholar 

  25. S. Mishra, C. Därmann, and K. Lücke: Acta Metall., 1984, vol. 32, pp. 2185–2201.

    Article  Google Scholar 

  26. L. Seidel, M. Hölscher, and K. Lücke: Texture, Stress, Microstruct., 1989, vol. 11, pp. 171-185.

    Google Scholar 

  27. J. K. Kim, D.N. Lee, & Y. M. Koo: Mater. Lett., 2014, vol. 122, pp. 110-113.

    Article  Google Scholar 

  28. I.L. Dillamore, P.L. Morris, C.J.E. Smith, and W.B. Hutchinson: Proc. R. Soc. Lond. A,1972, vol. 329, pp. 405-420.

    Article  Google Scholar 

  29. D. Dorner, S. Zaefferer, and D. Raabe: Acta Mater., 2007, vol. 55, pp. 2519–2530.

    Article  Google Scholar 

  30. J. T. Park and J. A. Szpunar: Acta Mater., 2003, vol. 51, pp. 3037-3051.

    Article  Google Scholar 

  31. K. Lücke: Can. Metall. Q., 1974, vol. 13, pp. 261–74.

    Article  Google Scholar 

  32. M. Hölscher, D. Raabe, K. Lücke: Steel Res., 1991, vol. 62, pp. 567–75.

    Article  Google Scholar 

  33. G. Ibe, and K. Lücke: Am. Soc. Metal., 1966, pp. 434–47

  34. H.T. Liu, Z.Y. Liu, Y. Sun, Y.Q. Qiu, C.G. Li, G.M. Cao, B.D. Hong, S.H. Kim, and G.D. Wang: Mater. Lett., 2012, vol. 81, pp. 65–68.

    Article  Google Scholar 

  35. M. Sanjari, Y. He, E. J. Hilinski, S. Yue and L. A. I. Kestens: Scr. Mater., 2016, vol. 124, pp. 179-183.

    Article  Google Scholar 

  36. Y. Hayakawa, M. Muraki, and J. A. Szpunar: Acta Mater., 1998. vol. 46, 1063-1073.

    Article  Google Scholar 

  37. C. Zener: Trans Amer Inst Metall Engrs., 1949, vol. 175, pp. 15-17.

    Google Scholar 

  38. K. Lücke and K. Detert: Acta Metall., 1957, vol. 5, pp. 628–637.

    Article  Google Scholar 

  39. Lücke K, Stuwe H (1963) Recovery and Recrystallisation, vol. 9. Interscience, New York, pp. 118–124

    Google Scholar 

  40. J. W. Cahn: Acta Metall., 1962, vol. 10, pp. 789–98.

    Article  Google Scholar 

Download references

Acknowledgments

Funding of this research was provided by Natural Sciences and Engineering Research Council of Canada (NSERC), and by the Program of Energy Research and Development (PERD), Natural Resources Canada. Michael Attard is thanked for rolling of the steels. Renata Zavadil and Jian Li are gratefully acknowledged for their assistance in EBSD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youliang He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 22, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehdi, M., He, Y., Hilinski, E.J. et al. Texture Evolution of a 2.8 Wt Pct Si Non-oriented Electrical Steel and the Elimination of the 〈111〉//ND Texture. Metall Mater Trans A 50, 3343–3357 (2019). https://doi.org/10.1007/s11661-019-05239-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05239-4

Navigation