Skip to main content
Log in

Deformation Behavior Estimation of Aluminum Foam by X-ray CT Image-based Finite Element Analysis

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Aluminum foam is a lightweight material owing to the existence of a large number of internal pores. The compressive properties and deformation behavior of aluminum foam are considered to be directly affected by the shape and distribution of these pores. In this study, we performed image-based finite element (FE) analyses of aluminum foam using X-ray computed tomography (CT) images and investigated the possibility of predicting its deformation behavior by comparing the results of FE analyses with those of actual compressive tests. We found that it was possible to create an analytic model reflecting the three-dimensional (3D) pore structure using image-based modeling based on X-ray CT images. The stress distribution obtained from image-based FE analysis correctly indicates the layer where deformation first occurs as observed in actual compressive tests. Also, by calculating the mean stress of each plane perpendicular to the direction of compression based on the stress distribution obtained from image-based FE analysis, it was found that deformation begins in the layer containing the plane with maximum stress. It was thus possible to estimate the layer where deformation begins during the compression of aluminum foam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.F. Ashby: Metall. Trans. A, 1983, vol. 14, pp. 1755–69.

  2. A.G. Evans, J.W. Hutchinson, and M.F. Ashby: Prog. Mater. Sci., 1998, vol. 43, pp. 171–221.

    Article  CAS  Google Scholar 

  3. L.J. Gibson: Ann. Rev. Mater. Sci., 2000, vol. 30, pp. 191–227.

    Article  CAS  Google Scholar 

  4. A.G. Evans, J.W. Hutchinson, N.A. Fleck, M.F. Ashby, and H.N.G. Wadley: Prog. Mater. Sci., 2001, vol. 46, pp. 309–27.

    Article  CAS  Google Scholar 

  5. J. Banhart: Prog. Mater. Sci., 2001, vol. 46, pp. 559–632.

    Article  CAS  Google Scholar 

  6. H. Nakajima: Prog. Mater Sci., 2007, vol. 52, pp. 1091–1173.

    Article  CAS  Google Scholar 

  7. A.F. Bastawros and A.G. Evans: Adv. Eng. Mater., 2000, vol. 2, pp. 210–14.

    Article  CAS  Google Scholar 

  8. A.F. Bastawros, H. Bart-Smith, and A.G. Evans: J. Mech. Phys. Solids, 2000, vol. 48, pp. 301–22.

  9. A.E. Markaki and T.W. Clyne: Acta Mater., 2001, vol. 49, pp. 1677–86.

    Article  CAS  Google Scholar 

  10. D.J. Werther, A.J. Howard, J.P. Ingraham, and K.A. Issen: Scripta Mater., 2006, vol. 54, pp. 783–87.

    Article  CAS  Google Scholar 

  11. M. Hakamada, T. Kuromura, Y. Chino, Y. Yamada, Y.Q. Chen, H. Kusuda, and M. Mabuchi: Mater. Sci. Eng. A, 2007, vol. 459, pp. 286–93.

    Article  Google Scholar 

  12. N. Takano, M. Zako, F. Kubo and K. Kimura: Int. J. Solids Struct., 2003, vol. 40, pp. 1225–42.

    Article  Google Scholar 

  13. S.J. Hollister and N. Kikuchi: Biotechnol. Bioeng., 1994, vol. 43, pp. 586–96.

    Article  CAS  Google Scholar 

  14. Y. Shiino, O. Kuwazuru, and N. Yoshikawa: J. Theor. Biol., 2009, vol. 259, pp. 132–41.

    Article  Google Scholar 

  15. Y. Hangai, O. Kuwazuru, T. Yano, T. Utsunomiya, Y. Murata, S. Kitahara, S. Bidhar, and N. Yoshikawa: Mater. Trans., 2010, vol. 51, pp. 1574–80.

    Article  CAS  Google Scholar 

  16. N. Vanderesse, E. Maire, A. Chabod, and J.Y. Buffiere: Int. J. Fatigue, 2011, vol. 33, pp. 1514–25.

    Article  CAS  Google Scholar 

  17. E. Maire, A. Fazekas, L. Salvo, R. Dendievel, S. Youssef, P. Cloetens and J.M. Letang: Compos. Sci. Technol., 2003, vol. 63, pp. 2431–43.

    Article  Google Scholar 

  18. T. Kujime, M. Tane, S.K. Hyun, and H. Nakajima: Mater. Sci. Eng. A, 2007, vol. 460, pp. 220–26.

    Article  Google Scholar 

  19. I. Jeon, T. Asahina, K.-J. Kang, S. Im, and T.J. Lu: Mech. Mater., 2010, vol. 42, pp. 227–36.

    Article  Google Scholar 

  20. N. Michailidis, F. Stergioudi, H. Omar, and D. Tsipas: Comput. Mater. Sci., 2010, vol. 48, pp. 282–86.

    Article  CAS  Google Scholar 

  21. H. Toda, M. Takata, T. Ohgaki, M. Kobayashi, T. Kobayashi, K. Uesugi, K. Makii, and Y. Aruga: Adv. Eng. Mater., 2006, vol. 8, pp. 459–67.

    Article  CAS  Google Scholar 

  22. T. Miyoshi, M. Itoh, S. Akiyama, and A. Kitahara: Adv. Eng. Mater., 2000, vol. 2, pp. 179–83.

    Article  CAS  Google Scholar 

  23. JIS-H-7902: Method for Compressive Test of Porous Metals, Japanese Standards Association, 2008.

  24. Y. Hangai, S. Maruhashi, S. Kitahara, O. Kuwazuru, and N. Yoshikawa: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2789–93.

    Article  CAS  Google Scholar 

  25. The-Japan-Institute-of-Light-Metals: Structures and Properties of Aluminum, The Japan Institute of Light Metals, 1991, pp. 413–18.

  26. A. Pollien, Y. Conde, L. Pambaguian, and A. Mortensen: Mater. Sci. Eng. A, 2005, vol. 404, pp. 9–18.

    Article  Google Scholar 

  27. A.H. Brothers and D.C. Dunand: Mater. Sci. Eng. A, 2008, vol. 489, pp. 439–43.

    Article  Google Scholar 

  28. K. Shinagawa: in Porous Metals and Metallic Foams, L.P. Lefebvre, J. Banhart, and D. Dunand, eds., Destech Pubns Inc, 2008, pp. 95–98.

  29. Y. Hangai, Y. Oba, S. Koyama, and T. Utsunomiya: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3585–89.

    Article  Google Scholar 

  30. Y. Hangai, K. Takahashi, T. Utsunomiya, S. Kitahara, O. Kuwazuru, and N. Yoshikawa: Mater. Sci. Eng. A, 2012, vol. 534, pp. 716–19.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was partly financially supported by the Industrial Technology Research Grant Program in 2009 from the New Energy and Industrial Technology Development Organization (NEDO) of Japan and JKA promotion funds from AUTORACE. The authors thank Professor K. Saito, Gunma University, for his helpful advice on conducting the experiments, and T. Miyoshi, Shinko Wire Company, Ltd., for providing ALPORAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiko Hangai.

Additional information

Manuscript submitted May 2, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hangai, Y., Yamaguchi, R., Takahashi, S. et al. Deformation Behavior Estimation of Aluminum Foam by X-ray CT Image-based Finite Element Analysis. Metall Mater Trans A 44, 1880–1886 (2013). https://doi.org/10.1007/s11661-012-1532-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1532-7

Keywords

Navigation