Skip to main content
Log in

Determination of Physical Properties and Thermal Conductivity of Graphite Foam with Image Analysis

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Since pore network structures of porous materials have irregular shapes and may vary in size, the accurate characterization and virtual 3D reconstruction of these materials are of great importance for a deeper understanding of the structure and subsequent calculations. In this study, the scanning electron microscope (SEM) and X-ray microcomputed tomography (µCT) images of a graphite foam sample are used for image analysis method (IAM) and virtual 3D reconstruction as non-destructive scientific tools with high accuracy. The morphological characterization and determination of effective pore diameter, porosity, specific surface area (SSA), and effective thermal conductivity (ETC) of POCO graphite foam are investigated. By examining the results obtained from the method of image analysis, it is found that there is a good agreement among the IAM results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(k_{wall}\) :

Cell wall thermal conductivity

\(D_{eff}\) :

Effective pore diameter

\(k_{eff}\) :

Effective thermal conductivity

LW :

Length and width of the image

\(n_{w}\) :

Number of white pixels

\(l_{P}\) :

Pore perimeter

\(A_{P}\) :

Pore area

\(\bar{f}z\) :

Shape factor

\(\emptyset\) :

Porosity

\(\rho_{r}\) :

Relative density

References

  1. P.S. Liu, G.F. Chen, Porous materials, 1st edn. (Elsevier, New York, 2014), pp. 1–20. https://doi.org/10.1016/B978-0-12-407788-1.00001-0

    Book  Google Scholar 

  2. W. Lin, J. Yuan, B. Sundén, Review on graphite foam as thermal material for heat exchangers (Linköpings universitet, Sweden, 2011), pp. 748–755. https://doi.org/10.3384/ecp11057748

    Book  Google Scholar 

  3. Y. Zhong, Q. Guo, S. Li, J. Shi, L. Liu, Sol. Energy Mat. Sol. C. 94, 1011 (2010)

    Article  Google Scholar 

  4. J. Kim, E. Jeong, Y. Lee, J. Ind. Eng. Chem. 32, 21 (2015)

    Article  Google Scholar 

  5. J. Banhart, Prog. Mater. Sci. 46, 559 (2001). https://doi.org/10.1016/S0079-6425(00)00002-5

    Article  Google Scholar 

  6. F.H. She, K.L. Tung, L.X. Kong, Robot CIM-INT Manuf. 24, 427 (2008)

    Article  Google Scholar 

  7. P. Elia, E. Nativ-Roth, Y. Zeiri, Z.E. Porat, Microporous Mesoporous Mater. 225, 465 (2016)

    Article  Google Scholar 

  8. Borislav D. Zdravkov, Jirı J. Cermak, Martin Sefara, Josef Janku, Cent. Eur. J. Chem. 5, 385 (2007). https://doi.org/10.2478/s11532-007-0017-9

    Article  Google Scholar 

  9. K. Sakai, J. Membrane Sci. 96, 91 (1994)

    Article  Google Scholar 

  10. R. Ziel, A. Hausa, A. Tulkeb, J. Membrane Sci. 323, 241 (2008)

    Article  Google Scholar 

  11. Z. Ying, M. Jürgen, Ceram. Int. 42, 2861 (2016). https://doi.org/10.1016/j.ceramint.2015.11.015

    Article  Google Scholar 

  12. P.S. Liu, Philos. Mag 90, 447 (2010). https://doi.org/10.1080/09500831003745571

    Article  ADS  Google Scholar 

  13. K.S. Walton, R.Q. Snurr, J. Am. Chem. Soc. 129, 8552 (2007)

    Article  Google Scholar 

  14. Herbert Giesche, Part Part Syst. Char. 23, 9 (2006)

    Article  Google Scholar 

  15. M. Silva, A. Fabio, Ferri, Nanocharacterization techniques (Elsevier, New York, 2017), pp. 1–35. https://doi.org/10.1016/B978-0-323-49778-7.00001-1

    Book  Google Scholar 

  16. X. Zhu, S. Ai, D. Fang, B. Liu, X. Lu, Comput. Mater. Sci. 82, 451 (2014)

    Article  Google Scholar 

  17. J. Wawrzeńczyka, W. Kozak, Procedia Eng. 108, 102 (2015)

    Article  Google Scholar 

  18. W.D. Martin III, B.J. Putman, N.B. Kaye, Constr. Build. Mater. 48, 210 (2013)

    Article  Google Scholar 

  19. C. Perrot, R. Panneton, X. Olny, J. Appl. Phys. 101, 113538 (2007)

    Article  ADS  Google Scholar 

  20. P. De Jaeger, C. T’Joen, H. Huisseune, B. Ameel, M. De Paepe, J. Appl. Phys. 109, 103519 (2011)

    Article  ADS  Google Scholar 

  21. K.K. Bodla, S.V. Garimella, J.Y. Murthy, Int. J. Heat Mass Transf. 73, 250 (2014)

    Article  Google Scholar 

  22. M. Bracconi, M. Ambrosetti, M. Maestri, G. Groppi, E. Tronconi, Chem. Eng. Trans. 315, 608 (2017)

    Article  Google Scholar 

  23. X. Zhu, S. Ai, X. Lu, K. Cheng, X. Ling, L. Zhu, B. Liu, Comput. Mater. Sci. 85, 38 (2014)

    Article  Google Scholar 

  24. E. Baird, G. Taylor, Curr. Biol. 27, 289 (2017)

    Article  Google Scholar 

  25. H. Ye, M.Y. Ma, Appl. Therm. Eng. 73, 1277 (2014)

    Google Scholar 

  26. P. Kumar, F. Topin, J. Vicente, Int. J. Therm. Sci. 81, 13 (2014)

    Article  Google Scholar 

  27. J.K. Carson, S.J. Lovatt, D.J. Tanner, A.C. Cleland, Int. J. Heat Mass Transf. 48, 2150 (2005)

    Article  Google Scholar 

  28. Z. Hashin, S. Shtrikman, J. Appl. Phys. 33, 3125 (1962)

    Article  ADS  Google Scholar 

  29. X. Yang, T. Lu, T. Kim, Transport Porous Med. 100, 211 (2013)

    Article  Google Scholar 

  30. R. Lind, Open source software in life science research (Elsevier, New York, 2012), pp. 131–149. https://doi.org/10.1533/9781908818249.131

    Book  Google Scholar 

  31. E. Brun, J. Vicente, F. Topin, R. Occelli, iMorph: A 3D morphological tool to fully analyze all kind of cellular materials (in Cellmet’08 (Dresden, Germany, 2008)

    Google Scholar 

Download references

Acknowledgements

This research is supported by the Scientific and Technological Research Council of Turkey under the Grant Number 315M136.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Mohammadimehr.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadimehr, A., Solmus, İ., Ozyer, B. et al. Determination of Physical Properties and Thermal Conductivity of Graphite Foam with Image Analysis. Int J Thermophys 41, 45 (2020). https://doi.org/10.1007/s10765-020-02623-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02623-w

Keywords

Navigation