Skip to main content
Log in

Application of a substructure-based hardening model to copper under loading path changes

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In addition to texture, plastic anisotropy of a polycrystalline fcc metal stems from the directional nature of the dislocation substructure within individual grains. This produces the marked work hardening or softening observed immediately following load path changes. Following the framework of Peeters et al., in bcc steel, we develop a dislocation substructure evolution-based stage III hardening model for copper, capable of capturing the constitutive response under load path changes. The present model accounts for the more complicated substructure geometry in fcc metals than in bcc. Using an optimization algorithm, the parameters governing substructure evolution in the model are fit to experimental stress-strain curves obtained during compression along the three orthogonal directions in samples previously rolled to various reductions. These experiments approximate monotonic, reverse, and cross-load paths. With parameters suitably chosen, the substructure model, embedded into a self-consistent polycrystal plasticity model, is able to reproduce the measured flow stress response of copper during load path change experiments. The sensitivity of the parameters to the assumed substructure geometry and their uniqueness are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Peeters, M. Seefeldt, C. Teodosiu, S.R. Kalidindi, P.V. Houtte, and E. Aernoudt: Acta Mater., 2001, vol. 49, pp. 1607–19.

    Article  CAS  Google Scholar 

  2. B. Peeters, B. Bacroix, C. Teodosiu, P.V. Houtte, and E. Aernoudt: Acta Mater., 2001, vol. 49, pp. 1621–32.

    Article  CAS  Google Scholar 

  3. S. Balasubramanian and L. Anand: Acta Mater., 2002, vol. 50, pp. 133–48.

    Article  CAS  Google Scholar 

  4. C. Tomé, G.R. Canova, U.F. Kocks, N. Christodoulou, and J.J. Jonas: Acta Metall., 1984, vol. 32 (10), pp. 1637–53.

    Article  Google Scholar 

  5. C.N. Tomé, P.J. Maudlin, R.A. Lebensohn, and G.C. Kaschner: Acta Mater., 2001, vol. 49, pp. 3085–96.

    Article  Google Scholar 

  6. S. Kok, A.J. Beaudoin, and D.A. Tortorelli: Int. J. Plasticity, 2002, vol. 18, pp. 715–41.

    Article  Google Scholar 

  7. U.F. Kocks, P. Franciosi, and M. Kawai: Textures Microstr., 1991, vols. 14–18, pp. 1103–14.

    Article  Google Scholar 

  8. U. Kocks and H. Mecking: Progr. Mater. Sci., 2003, vol. 48, pp. 171–273.

    Article  CAS  Google Scholar 

  9. C. Teodosiu and Z. Hu: Proc. Numiform ’95 on Simulation of Materials Processing: Theory, Methods and Applications, S. Shen and P.R. Dawson, eds., Balkema, Rotterdam, 1995, pp. 173–82.

    Google Scholar 

  10. P. Hähner: Scripta Mater., 2002, vol. 47, pp. 705–11.

    Article  Google Scholar 

  11. W. Pantleon: Acta Mater., 1998, vol. 46 (2), pp. 451–56.

    Article  CAS  Google Scholar 

  12. Y. Estrin, L.S. Tóth, A. Molinari, and Y. Bréchet: Acta Mater., 1998, vol. 46, pp. 5509–22.

    Article  CAS  Google Scholar 

  13. L.S. Tóth, A. Molinari, and Y. Estrin: J. Eng. Mater. Technol., 2002, vol. 124, pp. 71–77.

    Article  Google Scholar 

  14. S.C. Baik, Y. Estrin, H.S. Kim, and R.J. Hellmig: Mater. Sci. Eng., 2003, vol. A351, pp. 86–97.

    CAS  Google Scholar 

  15. J.J. Gracio, E.F. Rauch, F. Barlat, A.B. Lopes, and J.F. Duarte: Key Eng. Mater., 2002, vols. 230–232, pp. 521–24.

    Article  Google Scholar 

  16. E.F. Rauch, J.J. Gracio, F. Barlat, A.B. Lopes, and J.F. Duarte: Scripta Mater., 2002, vol. 46 (12), pp. 881–86.

    Article  CAS  Google Scholar 

  17. F. Barlat, J.F. Duarte, J.J. Gracio, A.B. Lopes, and E.F. Rauch: Int. J. Plasticity, 2003, vol. 19, pp. 1–22.

    Article  Google Scholar 

  18. A.B. Lopes, F. Barlat, J.J. Gracio, J.F.F. Duarte, and E.F. Rauch: Int. J. Plasticity, 2003, vol. 19, pp. 1–22.

    Article  Google Scholar 

  19. E. Aernoudt, P. van Houtte, and T. Leffers: Deformation and Textures of Metals at Large Strain, VCH, New York, NY, 1992, vol. 6, pp. 89–136.

    Google Scholar 

  20. A.S. Malin and M. Hatherly: Met. Sci., 1979, vol. 13, pp. 463–72.

    Article  CAS  Google Scholar 

  21. J.G. Sevillano and F. Torrealdea: Deformation of Polycrystals, Riso National Laboratory, Roskilde, 1981, p. 185.

    Google Scholar 

  22. H. Christoffersen and T. Leffers: Scripta Mater., 1997, vol. 37 (12), pp. 2041–46.

    Article  CAS  Google Scholar 

  23. X. Huang: Scripta Mater., 1998, vol. 38 (11), pp. 1697–703.

    Article  CAS  Google Scholar 

  24. B. Bay, N. Hansen, and D. Kuhlmann-Wilsdorf: Mater. Sci. Eng. A, 1989, vol. 113, pp. 385–97.

    Article  Google Scholar 

  25. D.A. Hughes and W.D. Nix: Metall. Trans. A, 1988, vol. 19A, pp. 3013–24.

    CAS  Google Scholar 

  26. D.A. Hughes and N. Hansen: Metall. Trans., 1993, vol. 24 A, pp. 2021–37.

    Google Scholar 

  27. D.A. Hughes and N. Hansen: Acta Mater., 2000, vol. 48, pp. 2985–3004.

    Article  CAS  Google Scholar 

  28. G. Winther, D.J. Jensen, and N. Hansen: Acta Mater., 1997, vol. 45 (12), pp. 5059–68.

    Article  CAS  Google Scholar 

  29. G. Winther: Acta Mater., 2003, vol. 51, pp. 417–29.

    Article  CAS  Google Scholar 

  30. U.F. Kocks, A.S. Argon, and M.F. Ashby: Progress in Materials Science, Thermodynamics and Kinetics of Slip, Pergamon Press, New York, NY, 1975.

    Google Scholar 

  31. L.P. Kubin and J. Lépinoux: in Strength of Metals and Alloys (ICSMA 8), P.O. Kettunen, T.K. Lepistö, and M.E. Lehtonen, eds., Pergamon Press, New York, NY, 1988, vol. 1, pp. 35–59.

    Google Scholar 

  32. L.P. Kubin: Dislocation Patterning, VCH, New York, NY, 1992, 138–87.

    Google Scholar 

  33. R.E. Lebensohn and C.N. Tomé: Acta Metall. Mater., 1993, vol. 41 (9), pp. 2611–24.

    Article  CAS  Google Scholar 

  34. N. Christodoulou, O.T. Woo, and S.R. MacEwen: Acta Metall., 1986, vol. 34 (8), pp. 1553–62.

    Article  Google Scholar 

  35. A.S. Argon and P. Haasen: Acta Metall. Mater., 1993, vol. 41 (11), pp. 3289–306.

    Article  CAS  Google Scholar 

  36. A. Godfrey and D.A. Hughes: Acta Metall. Mater., 2000, vol. 48 (8), pp. 1897–905.

    CAS  Google Scholar 

  37. M.N. Bassim and C.D. Liu: Mater. Sci. Eng. A, 1993, vol. A164, pp. 170–74.

    CAS  Google Scholar 

  38. U.F. Kocks, C.N. Tomé, and H.-R. Wenk: Texture and Anisotropy, Cambridge University Press, Cambridge, United Kingdom, 1998.

    Google Scholar 

  39. J.A. Wert, Q. Liu, and N. Hansen: Acta Metall. Mater., 1995, vol. 43 (11), pp. 4153–63.

    Article  CAS  Google Scholar 

  40. Q. Liu, D.J. Jensen, and N. Hansen: Acta Mater., 1998, vol. 46 (16), pp. 5819–38.

    Article  CAS  Google Scholar 

  41. Q. Liu, X. Huang, D.J. Lloyd, and N. Hansen: Acta Mater., 2002, vol. 50, pp. 3789–802.

    Article  CAS  Google Scholar 

  42. J.A. Wert and X. Huang: Phil. Mag., 2003, vol. 83 (8), pp. 969–83.

    Article  CAS  Google Scholar 

  43. M. Ortiz and E.A. Repetto: J. Mech. Phys Solids, 1999, vol. 47, pp. 397–462.

    Article  CAS  Google Scholar 

  44. M. Ortiz, E.A. Repetto, and L. Stainier: J. Mech. Phys. Solids, 2000, vol. 48, pp. 2077–2114.

    Article  Google Scholar 

  45. X. Huang and N. Hansen: Scripta Mater., 1997, vol. 37 (1), pp. 1–7.

    Article  CAS  Google Scholar 

  46. N. Hansen and X. Huang: Acta Mater., 1998, vol. 46 (5), pp. 1827–36.

    Article  CAS  Google Scholar 

  47. P. Brachetti, M.D. Ciccoli, G. DiPillo, and S. Lucidi: J. Global Optimiz., 1997, vol. 10 (2), pp. 165–84.

    Article  Google Scholar 

  48. W.L. Price: in Towards Global Optimization, L.C.W. Dixon and G.P. Szegö, eds., North-Holland, Amsterdam, 1978, vol. 2.

    Google Scholar 

  49. J.A. Nelder and R. Mead: Comput. J., 1965, pp. 303–13.

  50. W. Spendley, G.R. Hext, and F.R. Himsworth: Technometrics, 1962, vol. 4, pp. 441–61.

    Article  Google Scholar 

  51. R.A. Fletcher: Practical Methods of Optimization, vol. 1, Unconstrained Optimization, John Wiley & Sons, New York, NY, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahesh, S., Tomé, C.N., McCabe, R.J. et al. Application of a substructure-based hardening model to copper under loading path changes. Metall Mater Trans A 35, 3763–3774 (2004). https://doi.org/10.1007/s11661-004-0282-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0282-6

Keywords

Navigation