Skip to main content

Advertisement

Log in

Total Glucosides of Paeony Regulate Immune Imbalance Mediated by Dermal Mesenchymal Stem Cells in Psoriasis Mice

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To investigate the therapeutic effects of total glucosides of paeony (TGP) on psoriasis based on the immunomodulatory effect of dermal mesenchymal stem cells (DMSCs).

Methods

A total of 30 male BALB/c mice were divided into 6 groups (n=5 in each) by a random number table method, including control, psoriasis model (model, 5% imiquimod cream 42 mg/d), low-, medium- and high-dose TGP (50, 100, and 200 mg/kg, L, M-, and H-TGP, respectively), and positive control group (2.5 mg/kg acitretin). After 14 days of continuous administration, the skin’s histopathological changes, apoptosis, secretion of inflammatory cytokines, and proportion of regulatory T cells (Treg) and T helper cell 17 (Th17) were evaluated using hematoxylin-eosin (HE) staining, TdT-mediated dUTP nick end labeling staining, enzyme-linked immunosorbent assay, and flow cytometry, respectively. DMSCs were further isolated from the skin tissues of normal and psoriatic mice, and the cell morphology, phenotype, and cycle were observed. Furthermore, TGP was used to treat psoriatic DMSCs to analyze the effects on the DMSCs immune regulation.

Results

TGP alleviated skin pathological injury, reduced epidermis layer thickness, inhibited apoptosis, and regulated the secretion of inflammatory cytokines and the proportion of Treg and Th17 in the skin tissues of psoriatic mice (P<0.05 or P<0.01). There was no significant difference in cell morphology and phenotype between control and psoriatic DMSCs (P>0.05), however, more psoriatic DMSCs remained in G0/G1 phase compared with the normal DMSCs (P<0.01). TGP treatment of psoriatic DMSCs significantly increased cell viability, decreased apoptosis, relieved inflammatory response, and inhibited the expression of toll-like receptor 4 and P65 (P<0.05 or P<0.01).

Conclusion

TGP may exert a good therapeutic effect on psoriasis by regulating the immune imbalance of DMSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Griffiths CEM, Armstrong AW, Gudjonsson JE, Barker J. Psoriasis. Lancet 2021;397:1301–1315.

    Article  CAS  PubMed  Google Scholar 

  2. Rendon A, Schäkel K. Psoriasis pathogenesis and treatment. Int J Mol Sci 2019;20.

  3. Zhu B, Jing M, Yu Q, Ge X, Yuan F, Shi L. Treatments in psoriasis: from standard pharmacotherapy to nanotechnology therapy. Postepy Dermatol Alergol 2022;39:460–471.

    Article  PubMed  Google Scholar 

  4. Lanna C, Mancini M, Gaziano R, Cannizzaro MV, Galluzzo M, Talamonti M, et al. Skin immunity and its dysregulation in psoriasis. Cell Cycle 2019;18:2581–2589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang J, Chen Z, Sun M, Xu H, Gao Y, Liu J, et al. Characterization and therapeutic applications of mesenchymal stem cells for regenerative medicine. Tissue Cell 2020;64:101330.

    Article  CAS  PubMed  Google Scholar 

  6. Song N, Scholtemeijer M, Shah K. Mesenchymal stem cell immunomodulation: mechanisms and therapeutic potential. Trends Pharmacol Sci 2020;41:653–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Haydont V, Neiveyans V, Perez P, Busson É, Lataillade J, Asselineau D, et al. Fibroblasts from the human skin dermohypodermal junction are distinct from dermal papillary and reticular fibroblasts and from mesenchymal stem cells and exhibit a specific molecular profile related to extracellular matrix organization and modeling. Cells 2020;9:368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Niu X, Li J, Zhao X, Wang Q, Wang G, Hou R, et al. Dermal mesenchymal stem cells: a resource of migration-associated function in psoriasis? Stem Cell Res Ther 2019;10:54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao X, Jiao J, Li X, Hou R, Li J, Niu X, et al. Immunomodulatory effect of psoriasis-derived dermal mesenchymal stem cells on TH1/TH17 cells. Eur J Dermatol 2021;31:318–325.

    Article  CAS  PubMed  Google Scholar 

  10. Yin XP, Zhang XT, Zhu RJ, Song P. Effect of astragaloside IV on the immunoregulatory function of adipose-derived mesenchymal stem cells from patients with psoriasis vulgaris. J Tradit Chin Med 2022;42:513–519.

    PubMed Central  Google Scholar 

  11. Zhang L, Wei W. Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony. Pharmacol Ther 2020;207:107452.

    Article  CAS  PubMed  Google Scholar 

  12. Zheng Q, Jiang W, Sun X, Ma T, Xu W, Shen F, et al. Total glucosides of paeony for the treatment of psoriasis: a systematic review and meta-analysis of randomized controlled trials. Phytomedicine 2019;62:152940.

    Article  CAS  PubMed  Google Scholar 

  13. Zhao Z, Han Y, Zhang Z, Li W, Ji X, Liu X, et al. Total glucosides of paeony improves the immunomodulatory capacity of MSCs partially via the miR-124/STAT3 pathway in oral lichen planus. Biomed Pharmacother 2018;105:151–158.

    Article  CAS  PubMed  Google Scholar 

  14. Guo J, Liu Y, Guo X, Meng Y, Qi C, Zhao J, et al. Depressive-like behaviors in mice with imiquimod-induced psoriasis. Int Immunopharmacol 2020;89:107057.

    Article  CAS  PubMed  Google Scholar 

  15. Bożek A, Reich A. The reliability of three psoriasis assessment tools: psoriasis area and severity index, body surface area and physician global assessment. Adv Clin Exp Med 2017;26:851–856.

    Article  PubMed  Google Scholar 

  16. Kamiya K, Kishimoto M, Sugai J, Komine M, Ohtsuki M. Risk factors for the development of psoriasis. Int J Mol Sci 2019;20:4347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Paganelli A, Tarentini E, Benassi L, Kaleci S, Magnoni C. Mesenchymal stem cells for the treatment of psoriasis: a comprehensive review. Clin Exp Dermatol 2020;45:824–830.

    Article  CAS  PubMed  Google Scholar 

  18. Jiang H, Li J, Wang L, Wang S, Nie X, Chen Y, et al. Total glucosides of paeony: a review of its phytochemistry, role in autoimmune diseases, and mechanisms of action. J Ethnopharmacol 2020;258:112913.

    Article  CAS  PubMed  Google Scholar 

  19. Xue X, Liu G, Wei Y, Fu B, Li F, Wu D, et al. Multi-element characteristics of Chinese medical Baishao (Paeoniae Radix Alba) and their decoctions. Biol Trace Elem Res 2021;199:2375–2386.

    Article  CAS  PubMed  Google Scholar 

  20. Li H, Cao XY, Dang WZ, Jiang B, Zou J, Shen XY. Total glucosides of paeony protects against collagen-induced mouse arthritis via inhibiting follicular helper T cell differentiation. Phytomedicine 2019;65:153091.

    Article  CAS  PubMed  Google Scholar 

  21. Li B, Liu G, Liu R, He S, Li X, Huang L, et al. Total glucosides of paeony (TGP) alleviates Sjogren’s syndrome through inhibiting inflammatory responses in mice. Phytomedicine 2020;71:153203.

    Article  CAS  PubMed  Google Scholar 

  22. Liu B, Meng X, Ma Y, Li H, Liu Y, Shi N, et al. Clinical safety of total glucosides of paeony adjuvant therapy for rheumatoid arthritis treatment: a systematic review and meta-analysis. BMC Complement Med Ther 2021;21:102.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li B, He S, Liu R, Huang L, Liu G, Wang R, et al. Total glucosides of paeony attenuates animal psoriasis induced inflammatory response through inhibiting STAT1 and STAT3 phosphorylation. J Ethnopharmacol 2019;243:112121.

    Article  CAS  PubMed  Google Scholar 

  24. Chen T, Fu LX, Zhang LW, Yin B, Zhou PM, Cao N, et al. Paeoniflorin suppresses inflammatory response in imiquimod-induced psoriasis-like mice and peripheral blood mononuclear cells (PBMCs) from psoriasis patients. Can J Physiol Pharmacol 2016;94:888–894.

    Article  CAS  PubMed  Google Scholar 

  25. Wang YN, Zhang Y, Wang Y, Zhu DX, Xu LQ, Fang H, et al. The beneficial effect of total glucosides of paeony on psoriatic arthritis links to circulating Tregs and Th1 cell function. Phytother Res 2014;28:372–381.

    Article  CAS  PubMed  Google Scholar 

  26. Nussbaum L, Chen YL, Ogg GS. Role of regulatory T cells in psoriasis pathogenesis and treatment. Br J Dermatol 2021;184:14–24.

    Article  CAS  PubMed  Google Scholar 

  27. Yasuda K, Takeuchi Y, Hirota K. The pathogenicity of Th17 cells in autoimmune diseases. Sem Immunopathol 2019;41:283–297.

    Article  Google Scholar 

  28. Göschl L, Scheinecker C, Bonelli M. Treg cells in autoimmunity: from identification to Treg-based therapies. Sem Immunopathol 2019;41:301–314.

    Article  Google Scholar 

  29. Priyadarssini M, Divya Priya D, Indhumathi S, Rajappa M, Chandrashekar L, Thappa DM. Immunophenotyping of T cells in the peripheral circulation in psoriasis. Br J Biomed Sci 2016;73:174–179.

    Article  CAS  PubMed  Google Scholar 

  30. Yang R, Gao H, Chen L, Fang N, Chen H, Song G, et al. Effect of peripheral blood-derived mesenchymal stem cells on macrophage polarization and Th17/Treg balance in vitro. Regen Ther 2020;14:275–283.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Shi Y, Wang Y, Li Q, Liu K, Hou J, Shao C, et al. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat Rev Nephrol 2018;14:493–507.

    Article  CAS  PubMed  Google Scholar 

  32. Wang Q, Chang W, Yang X, Cheng Y, Zhao X, Zhou L, et al. Levels of miR-31 and its target genes in dermal mesenchymal cells of patients with psoriasis. Int J Dermatol 2019;58:198–204.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Y, Yan J, Li Z, Zheng J, Sun Q. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate psoriasis-like skin inflammation. J Interferon Cytokine Res 2022;42:8–18.

    Article  CAS  PubMed  Google Scholar 

  34. Peng A, Lu F, Xing J, Dou Y, Yao Y, Li J, et al. Psoriatic dermal-derived mesenchymal stem cells induced C3 expression in keratinocytes. Clin Cosmet Inv Dermatol 2022;15:1489–1497.

    Article  Google Scholar 

  35. Caligiuri G. Mechanotransduction, immunoregulation, and metabolic functions of CD31 in cardiovascular pathophysiology. Cardiovasc Res 2019;115:1425–1434.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Lei MJ, Bai F and Tian Z designed the research; Lei MJ and Bai F performed the research; Zhang QY and Yang QQ analyzed the data; Lei MJ, Bai F and Tian Z wrote the paper. All authors agreed to publish the final version.

Corresponding author

Correspondence to Zan Tian.

Additional information

Conflict of Interest

The authors declare that they have no conflict of interest.

Supported by Hebei Provincial Administration of Traditional Chinese Medicine (No. 2020016)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Mj., Bai, F., Zhang, Qy. et al. Total Glucosides of Paeony Regulate Immune Imbalance Mediated by Dermal Mesenchymal Stem Cells in Psoriasis Mice. Chin. J. Integr. Med. 29, 517–525 (2023). https://doi.org/10.1007/s11655-023-3737-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-023-3737-y

Keywords

Navigation