Skip to main content
Log in

Comprehensive Analysis of Key mRNAs and lncRNAs in Osteosarcoma Response to Preoperative Chemotherapy with Prognostic Values

  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

Objective

Osteosarcoma is one of the most common types of bone sarcoma with a poor prognosis. However, identifying the predictive factors that contribute to the response to neoadjuvant chemotherapy remains a significant challenge.

Methods

A public data series (GSE87437) was downloaded to identify differentially expressed genes (DEGs) and differentially expressed lncRNAs (DElncRNAs) between osteosarcoma patients that do and do not respond to preoperative chemotherapy. Subsequently, functional analysis of the transcriptome expression profile, regulatory networks of DEGs and DElncRNAs, competing endogenous RNAs (ceRNA) and protein-protein interaction networks were performed. Furthermore, the function, pathway, and survival analysis of hub genes was performed and drug and disease relationship prediction of DElncRNA was carried out.

Results

A total of 626 DEGs, 26 DElncRNAs, and 18 hub genes were identified. However, only one gene and two lncRNAs were found to be suitable as candidate gene and lncRNAs respectively.

Conclusion

The DEGs, hub genes, candidate gene, and candidate lncRNAs screened out in this context were considered as potential biomarkers for the response to neoadjuvant chemotherapy of osteosarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2020. CA Cancer J Clin, 2020,70(1):7–30

    PubMed  Google Scholar 

  2. Close AG, Dreyzin A, Miller KD, et al. Adolescent and young adult oncology-past, present, and future. CA Cancer J Clin, 2019,69(6):485–496

    Article  PubMed  Google Scholar 

  3. Crompton JG, Ogura K, Bernthal NM, et al. Local Control of Soft Tissue and Bone Sarcomas. J Clin Oncol, 2018,36(2):111–117

    Article  CAS  PubMed  Google Scholar 

  4. Li M, Jin X, Guo F, et al. Integrative analyses of key genes and regulatory elements in fluoride-affected osteosarcoma. J Cell Biochem, 2019,120(9):15397–15409

    Article  CAS  PubMed  Google Scholar 

  5. Li M, Jin X, Li H, et al. Comprehensive Analysis of Key Genes and Regulatory Elements in Osteosarcoma Affected by Bone Matrix Mineral With Prognostic Values. Front Genet, 2020,11:533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li M, Jin X, Li H, et al. Key genes with prognostic values in suppression of osteosarcoma metastasis using comprehensive analysis. BMC Cancer, 2020,20(1):65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Vella S, Tavanti E, Hattinger CM, et al. Targeting CDKs with Roscovitine Increases Sensitivity to DNA Damaging Drugs of Human Osteosarcoma Cells. PLoS One, 2016,11(11):e0166233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Clough E, Barrett T, The Gene Expression Omnibus Database. Methods Mol Biol, 2016,1418:93–110

    Article  PubMed  PubMed Central  Google Scholar 

  9. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA, 2005,102(43):15545–15550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ge SX, Son EW, and Yao R. iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinformatics, 2018, 19(1):534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhou G, Xia J. Using OmicsNet for Network Integration and 3D Visualization. Curr Protoc Bioinformatics, 2019,65(1):e69

    Article  PubMed  Google Scholar 

  12. Casper J, Zweig AS, Villarreal C, et al. The UCSC Genome Browser database: 2018 update. Nucleic Acids Res, 2018,46(D1):D762–d769

    Article  CAS  PubMed  Google Scholar 

  13. Hu H, Miao YR, Jia LH, et al. AnimalTFDB 3.0: a comprehensive resource for annotation and prediction of animal transcription factors. Nucleic Acids Res, 2019,47(D1):D33–d38

    Article  CAS  PubMed  Google Scholar 

  14. Smoot ME, Ono K, Ruscheinski J, et al. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics, 2011,27(3):431–432

    Article  CAS  PubMed  Google Scholar 

  15. Fan CN, Ma L, Liu N. Systematic analysis of lncRNA-miRNA-mRNA competing endogenous RNA network identifies four-lncRNA signature as a prognostic biomarker for breast cancer. J Transl Med, 2018,16(1):264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ma L, Cao J, Liu L, et al. LncBook: a curated knowledgebase of human long non-coding RNAs. Nucleic Acids Res, 2019,47(D1):D128–d134

    Article  CAS  PubMed  Google Scholar 

  17. Sticht C, De La Torre C, Parveen A, et al. miRWalk: An online resource for prediction of microRNA binding sites. PLoS One, 2018,13(10):e0206239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Szklarczyk D, Morris JH, Cook H, et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res, 2017,45(D1):D362–d368

    Article  CAS  PubMed  Google Scholar 

  19. Bandettini WP, Kellman P, Mancini C, et al. MultiContrast Delayed Enhancement (MCODE) improves detection of subendocardial myocardial infarction by late gadolinium enhancement cardiovascular magnetic resonance: a clinical validation study. J Cardiovasc Magn Reson, 2012,14(1):83

    Article  PubMed  PubMed Central  Google Scholar 

  20. Liao Y, Wang J, Jaehnig EJ, et al. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res, 2019,47(W1):W199–w205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Goswami CP, Nakshatri H. PROGgeneV2: enhancements on the existing database. BMC Cancer, 2014,14:970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Li Y, Li L, Wang Z, et al. LncMAP: Pan-cancer atlas of long noncoding RNA-mediated transcriptional network perturbations. Nucleic Acids Res, 2018,46(3):1113–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carvalho-Silva D, Pierleoni A, Pignatelli M, et al. Open Targets Platform: new developments and updates two years on. Nucleic Acids Res, 2019,47(D1):D1056–d1065

    Article  CAS  PubMed  Google Scholar 

  24. Tang Z, Li C, Kang B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res, 2017,45(W1): W98–W102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res, 2018,46(D1):D1074–D1082

    Article  CAS  PubMed  Google Scholar 

  26. Miwa S, Takeuchi A, Shirai T, et al. Prognostic value of radiological response to chemotherapy in patients with osteosarcoma. PLoS One, 2013,8(7):e70015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Byun BH, Kong CB, Lim I, et al. Early response monitoring to neoadjuvant chemotherapy in osteosarcoma using sequential 18F-FDG PET/CT and MRI. Eur J Nucl Med Mol Imaging, 2014,41(8):1553–1562

    Article  CAS  PubMed  Google Scholar 

  28. Laux CJ, Berzaczy G, Weber M, et al. Tumour response of osteosarcoma to neoadjuvant chemotherapy evaluated by magnetic resonance imaging as prognostic factor for outcome. Int Orthop, 2015,39(1):97–104

    Article  PubMed  Google Scholar 

  29. Zhang H, Ge J, Hong H, et al. Genetic polymorphisms in ERCC1 and ERCC2 genes are associated with response to chemotherapy in osteosarcoma patients among Chinese population: a meta-analysis. World J Surg Oncol, 2017,15(1):75

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jung SY, Kwak JO, Kim HW, et al. Calcium sensing receptor forms complex with and is up-regulated by caveolin-1 in cultured human osteosarcoma (Saos-2) cells. Exp Mol Med, 2005,37(2):91–100

    Article  CAS  PubMed  Google Scholar 

  31. Bernardini G, Laschi M, Serchi T, et al. Proteomics and phosphoproteomics provide insights into the mechanism of action of a novel pyrazolo[3,4-d] pyrimidine Src inhibitor in human osteosarcoma. Mol Biosyst, 2014,10(6):1305–1312

    Article  CAS  PubMed  Google Scholar 

  32. Villanueva F, Araya H, Briceno P, et al. The cancer-related transcription factor RUNX2 modulates expression and secretion of the matricellular protein osteopontin in osteosarcoma cells to promote adhesion to endothelial pulmonary cells and lung metastasis. J Cell Physiol, 2019,234(8):13659–13679

    Article  CAS  PubMed  Google Scholar 

  33. Maurizi G, Verma N, Gadi A, et al. Sox2 is required for tumor development and cancer cell proliferation in osteosarcoma. Oncogene, 2018,37(33):4626–4632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu H, Chen Y, Zhou F, et al. Sox9 regulates hyperexpression of Wnt1 and Fzd1 in human osteosarcoma tissues and cells. Int J Clin Exp Pathol, 2014,7(8):4795–805

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mandela P, Yankova M, Conti LH, et al. Kalrn plays key roles within and outside of the nervous system. BMC Neurosci, 2012,13:136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dang M, Wang Z, Zhang R, et al. KALRN Rare and Common Variants and Susceptibility to Ischemic Stroke in Chinese Han Population. Neuromolecular Med, 2015. 17(3): 241–50.

    Article  CAS  PubMed  Google Scholar 

  37. Liu HQ, Shu X, Ma Q, et al. Identifying specific miRNAs and associated mRNAs in CD44 and CD90 cancer stem cell subtypes in gastric cancer cell line SNU-5. Int J Clin Exp Pathol, 2020,13(6):1313–1323

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Nath A, Lau EYT, Lee AM, et al. Discovering long noncoding RNA predictors of anticancer drug sensitivity beyond protein-coding genes. Proc Natl Acad Sci U S A, 2019,116(44):22 020–22 029

    Article  CAS  Google Scholar 

  39. Vishnubalaji R, Shaath H, Elkord E, et al. Long noncoding RNA (lncRNA) transcriptional landscape in breast cancer identifies LINC01614 as non-favorable prognostic biomarker regulated by TGFβ and focal adhesion kinase (FAK) signaling. Cell Death Discov, 2019,5:109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Di Agostino S, Valenti F, Sacconi A, et al. Long Non-coding MIR205HG Depletes Hsa-miR-590-3p Leading to Unrestrained Proliferation in Head and Neck Squamous Cell Carcinoma. Theranostics, 2018,8(7):1850–1868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Wan J, Deng D, Wang X, et al. LINC00491 as a new molecular marker can promote the proliferation, migration and invasion of colon adenocarcinoma cells. Onco Targets Ther, 2019,12:6471–6480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu J, Yao Y, Hu Z, et al. Transcriptional profiling of long-intergenic noncoding RNAs in lung squamous cell carcinoma and its value in diagnosis and prognosis. Mol Genet Genomic Med, 2019,7(12):e994

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Si-si Deng, Jian Li or Cai-hong Yang.

Ethics declarations

The authors declare that there is no conflict of interest with any financial organization or corporation or individual that can inappropriately influence this work.

Additional information

The study was supported by the grant from the Research Foundation of Tongji Hospital (No. 2019B17).

Supplementary data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Cheng, Wt., Li, H. et al. Comprehensive Analysis of Key mRNAs and lncRNAs in Osteosarcoma Response to Preoperative Chemotherapy with Prognostic Values. CURR MED SCI 41, 916–929 (2021). https://doi.org/10.1007/s11596-021-2430-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-021-2430-2

Key words

Navigation