Skip to main content
Log in

Enhanced Electrochemical Performances of Ni Doped Cr8O21 Cathode Materials for Lithium-ion Batteries

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Cathode materials, nickel doped Cr8O21, were synthesized by a solid-state method. The effects of Ni doping on the electrochemical performances of Cr8O21 were investigated. The experimental results show that the discharge capacities of the samples depend on the nickel contents, which increases firstly and then decreases with increasing Ni contents. Optimized Ni0.5Cr7.5O21 delivers a first capacity up to 392.6 mAh·g−1 at 0.1 C. In addition, Ni doped sample also demonstrates enhanced cycling stability and rate capability compared with that of the bare Cr8O21. At 1 C, an initial discharge capacity of 348.7 mAh·g−1 was achieved for Ni0.5Cr7.5O21, much higher than 271.4 mAh·g−1 of the un-doped sample, with an increase of more than 28%. Electrochemical impedance spectroscopy results confirm that Ni doping reduces the growth of interface resistance and charge transfer resistance, which is conducive to the electrochemical kinetic behaviors during charge-discharge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dunn B, Kamath H, Tarascon J. Electrical Energy Storage for the Grid: A Battery of Choices[J]. Science, 2011, 334(6058): 928–935

    Article  CAS  PubMed  Google Scholar 

  2. He YJ, Du ZB, Su Y, et al. Salt-washing Improvement of the Electrochemical Properties of Zeolite-sulfur Cathode for Lithium-sulfur Batteries[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2020, 35(4): 665–670

    Article  CAS  Google Scholar 

  3. Manthiram A. A Reflection on Lithium-ion Battery Cathode Chemistry[J]. Nature Communications, 2020, 11(1): 1–9

    Article  Google Scholar 

  4. Hao JS, Yu ZY, Liu HX, et al. Enhancing Electrochemical Performances of LiNi0.5Co0.2Mn0.3O2 Cathode Materials Derived from NiF2 Artificial Interface at Elevated Voltage[J]. Journal of Alloys and Compounds, 2019, 806: 814–822

    Article  CAS  Google Scholar 

  5. Li XX, Tan TN, Zhang J, et al. Nitrogen Deficient Graphitic Carbon Nitride as Anodes for Lithium-ion Batteries[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2020, 35(2): 263–271

    Article  CAS  Google Scholar 

  6. Huang J, Yu ZY, Yang J, et al. LaNiO3 Surface Modified LiNi0.5Co0.2Mn0.3O2 as Cathode Materials for Li-ion Batteries[J]. Chemistry Letters, 2020, 49(2): 114–117

    Article  Google Scholar 

  7. Guo WM, Zhu QL, Li XM, et al. Preparation and Application of Manganese Dioxide/Graphene Composite in Lithium Sulfur Batteries[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2020, 35(1): 1–8

    Article  CAS  Google Scholar 

  8. Jung SK, Kim HC, Cho MG, et al. Lithium-free Transition Metal Monoxides for Positive Electrodes in Lithium-ion Batteries[J]. Nature Energy, 2017, 2(2): 1–9

    Article  Google Scholar 

  9. Xia DW, Gao HP, Li MQ, et al. Transition Metal Vanadates Electrodes in Lithium-ion Batteries: A Holistic Review[J]. Energy Storage Materials, 2021, 35: 169–191

    Article  Google Scholar 

  10. Arora P, Zhang D, Popov BN, et al. Chromium Oxides and Lithiated Chromium Oxides. Promising Cathode Materials for Secondary Lithium Batteries[J]. Electrochemical and Solid-state Letters, 1998, 1(6): 249

    Article  CAS  Google Scholar 

  11. Besenhard JO, Schwake M, Misailidis N. Modified Chromium Oxides for High-rate Lithium Intercalation Cathodes[J]. Journal of Power Sources, 1989, 26(3–4): 409–414

    Article  CAS  Google Scholar 

  12. Ramasamy RP, Ramadass P, Haran BS, et al. Synthesis, Characterization and Cycling Performance of Novel Chromium Oxide Cathode Materials for Lithium Batteries[J]. Journal of Power Sources, 2003, 124(1): 155–162

    Article  CAS  Google Scholar 

  13. Norby P, Christensen AN, Fjellvåg H, et al. The Crystal Structure of Cr8O21 Determined from Powder Diffraction Data: Thermal Transformation and Magnetic Properties of a Chromium-chromate-tetrachromate[J]. Journal of Solid State Chemistry, 1991, 94(2): 281–293

    Article  CAS  Google Scholar 

  14. Feng XY, Ding N, Wang L, et al. Synthesis and Reversible Lithium Storage of Cr2O5 as a New High Energy Density Cathode Material for Rechargeable Lithium Batteries[J]. Journal of Power Sources, 2013, 222: 184–187

    Article  CAS  Google Scholar 

  15. Liu JY, Wang ZX, Li H, et al. Synthesis and Characterization of Cr8O21 as Cathode Material for Rechargeable Lithium Batteries[J]. Solid State Ionics, 2006, 177(26–32): 2 675–2 678

    Article  CAS  Google Scholar 

  16. Yang J, Yu ZY, Yang B, et al. Electrochemical Characterization of Cr8O21 Modified LiNi0.5Co0.2Mn0.3O2 Cathode Material[J]. Electrochimica Acta, 2018, 266: 342–347

    Article  CAS  Google Scholar 

  17. Zhang SC, Zou ZG, Zhong SL, et al. Al/Mn Co-doping Endows V2O5-4VO2 Cathode with Enhanced Lithium Storage Performance[J]. Electrochimica Acta, 2022, 401: 139483

    Article  CAS  Google Scholar 

  18. Moon JS, Nulu A, Hwang YG, et al. Facile Synthesis of Porous Hollow Cobalt-Doped λ-MnO2 Nano Architectures as a High-performance Anode Material for Li-ion Batteries and Li-ion Hybrid Supercapacitors[J]. Chemistry Select, 2021, 6(28): 7 012–7 024

    CAS  Google Scholar 

  19. Suthirakun S, Jungthawan S, Limpijumnong S. Effect of Sn-doping on Behavior of Li-intercalation in V2O5 Cathode Materials of Li-ion batteries: A Computational Perspective[J]. The Journal of Physical Chemistry C, 2018, 122(11): 5 896–5 907

    Article  CAS  Google Scholar 

  20. Pei MC, Qi ZQ, Wu YD, et al. Facile Synthesis and Electrochemical Performance of a Copper-doped Anode Material Cu0.5Ni0.5Co2O4 for Lithium-ion Batteries[J]. Ionics, 2021, 27(7): 2 803–2 812

    Article  CAS  Google Scholar 

  21. Usui H, Domi Y, Yoshioka S, et al. Electrochemical Lithiation and Sodiation of Nb-doped Rutile TiO2[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(12): 6 695–6 702

    Article  CAS  Google Scholar 

  22. Rehman A, Ali G, Abbas SM, et al. Axial Expansion of Ni-doped TiO2 Nanorods Grown on Carbon Nanotubes for Favourable Lithium-ion Intercalation[J]. Chemical Engineering Journal, 2019, 375: 122021

    Article  Google Scholar 

  23. Zhang CK, Wang K, Liu CF, et al. Effects of High Surface Energy on Lithium-ion Intercalation Properties of Ni-doped Li3VO4[J]. NPG Asia Materials, 2016, 8(7): e287–e287

    Article  CAS  Google Scholar 

  24. Saleem A, Majeed MK, Niaz SI, et al. Nickel Doped Copper Ferrite NixCu1−xFe2O4 for a High Crystalline Anode Material for Lithium Ion Batteries[J]. New Journal of Chemistry, 2021, 45(3): 1 456–1 462

    Article  CAS  Google Scholar 

  25. Deng YL, Mou JR, Wu HL, et al. Enhanced Electrochemical Performance in Ni-Doped LiMn2O4-Based Composite Cathodes for Lithium-ion Batteries[J]. Chem. Electro. Chem., 2017, 4(6): 1 362–1 371

    CAS  Google Scholar 

  26. Wang YT, Cheng T, Yu ZR, et al. Study on the Effect of Ni and Mn Doping on the Structural Evolution of LiCoO2 under 4.6 V High-voltage Cycling[J]. Journal of Alloys and Compounds, 2020, 842: 155827

    Article  CAS  Google Scholar 

  27. Wang Y, Li Y, Zhang Y, et al. Influence of Synergistic Effect of LiNi0.8Co0.15Al0.05O2@Cr2O5 Composite on the Electrochemical Properties[J]. Chinese Journal of Chemical Engineering, 2021, 33: 327–336

    Article  CAS  Google Scholar 

  28. Ding X, Zou BK, Li YX, et al. A Novel Lithium-ion Battery Comprising Li-rich@ Cr2O5 Composite Cathode and Li4Ti5O12 Anode with Controllable Coulombic Efficiency[J]. Science China Materials, 2017, 60(9): 839–848

    Article  CAS  Google Scholar 

  29. Zhang D, Popov BN, Podrazhansky YM, et al. Cobalt Doped Chromium Oxides as Cathode Materials for Secondary Lithium Batteries[J]. Journal of Power Sources, 1999, 83(1–2): 121–127

    Article  CAS  Google Scholar 

  30. Ramasamy RP, Veeraraghavan B, Haran B, et al. Electrochemical Characterization of a Polypyrrole/Co0.2CrOx Composite as a Cathode Material for Lithium Ion Batteries[J]. Journal of Power Sources, 2003, 124(1): 197–203

    Article  CAS  Google Scholar 

  31. Harpak N, Davidi G, Cohen A, et al. Thermally-treated Nanowire-structured Stainless-steel as an Attractive Cathode Material for Lithium-ion Batteries[J]. Nano Energy, 2020, 76: 105054

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Yu  (余志勇).

Ethics declarations

All authors declare that there are no competing interests.

Additional information

Funded by the National Natural Science Foundation of China (No. 51790490)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, G., Liu, H., Yu, Z. et al. Enhanced Electrochemical Performances of Ni Doped Cr8O21 Cathode Materials for Lithium-ion Batteries. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 38, 1242–1247 (2023). https://doi.org/10.1007/s11595-023-2815-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-023-2815-0

Key words

Navigation