Skip to main content

Advertisement

Log in

Preparation of Sr-substituted Hydroxyapatite Nanorods for Liquid Crystal Phase Transition

  • Biomaterials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

A citrate-assisted hydrothermal method was utilized for the preparation of Sr-substituted hydroxyapatite (HA) nanoparticles. The influences of Sr-substituting degree on the phase identifications, microstructures and colloidal stability of the resultant products were studied. The experimental results show that the crystalline structures and morphologies of final resultants are significantly changed by controlling the Sr-substituting degree. As the Sr-substituting degree increases, the colloidal stability of samples first increases and then decreases rapidly; the morphology of the product first changes from nanorods to short nanorods rod and then becomes nanowires. Uniform HA hexagonal nanorods with high aspect ratio (>4.0) and excellent aqueous colloidal stability were prepared by 6 h hydrothermal reaction at 180 °C without Sr substitution. The dispersion underwent the phase transition from isotropic to liquid-crystalline state upon the increasing concentration of 25wt% and the complete liquid-crystalline phase was achieved when at the concentration above 31wt%. These novel findings provide new insights into the role of Sr substitution on both the citrate-assisted hydroxyapatite crystallization and tailoring of colloidal stability. Moreover, HA liquid crystal behavior was successfully observed, which lays a foundation for the fabrication of macroscopically assembled hydroxyapatite-based biomimetic materials for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang L, Nancollas GH. Calcium Orthophosphates: Crystallization and Dissolution[J]. Chemical Reviews, 2008, 108: 4 628–4 669

    Article  CAS  Google Scholar 

  2. Qi C, Lin J, Fu LH, et al. Calcium-based Biomaterials for Diagnosis, Treatment, and Theranostics[J]. Chemical Society Reviews, 2017, 47: 357–403

    Article  Google Scholar 

  3. Qiu ZY, Cui Y, Tao CS, et al. Mineralized Collagen: Rationale, Current Status, and Clinical Applications[J]. Materials (Basel), 2015, 8: 4 733–4 750

    Article  CAS  Google Scholar 

  4. Hu Y, Gu X, Yang Y, et al. Facile Fabrication of Poly(L-lactic acid)-Grafted Hydroxyapatite/poly(lactic-co-glycolic acid) Scaffolds by Pickering High Internal Phase Emulsion Templates[J]. ACS Applied Materials & Interfaces, 2014, 6: 17166–17175

    Article  CAS  Google Scholar 

  5. Teotia AK, Raina DB, Singh C, et al. Nano-Hydroxyapatite Bone Substitute Functionalized with Bone Active Molecules for Enhanced Cranial Bone Regeneration[J]. ACS Applied Materials & Interfaces, 2017, 9: 6 816–6 828

    Article  CAS  Google Scholar 

  6. Fernando MS, de Silva RM, de Silva KMN. Synthesis, Characterization, and Application of Nano Hydroxyapatite and Nanocomposite of Hydroxyapatite with Granular Activated Carbon for the Removal of Pb2+ from Aqueous Solutions[J]. Applied Surface Science, 2015, 351: 95–103

    Article  CAS  Google Scholar 

  7. Googerdchian F, Moheb A, Emadi R, et al. Optimization of Pb(II) Ions Adsorption on Nanohydroxyapatite Adsorbents by Applying Taguchi method[J]. Journal of Hazardous Materials, 2018, 349: 186–194

    Article  CAS  Google Scholar 

  8. Chen X, Jin X, Tan J, et al. Large-scale Synthesis of Water-soluble Lu-Minescent Hydroxyapatite Nanorods for Security Printing[J]. Journal of Colloid and Interface Science, 2016, 468: 300–306

    Article  CAS  Google Scholar 

  9. Victor SP, Gayathri Devi MG, Paul W, et al. Europium Doped Calcium Deficient Hydroxyapatite as Theranostic Nanoplatforms: Effect of Structure and Aspect Ratio[J]. ACS Biomaterials Science & Engineering, 2017, 3: 3 588–3 595

    Article  CAS  Google Scholar 

  10. Sun Y, Li Y, Xu J, et al. Interconnectivity of Macroporous Molecularly Imprinted Polymers Fabricated by Hydroxyapatite-stabilized Pickering High Internal Phase Emulsions-hydrogels for the Selective Recognition of Protein[J]. Colloids and Surfaces B, Biointerfaces, 2017, 155: 142–149

    Article  CAS  Google Scholar 

  11. Li P, Li L, Zhao Y, Sun L, et al. Selective Binding and Magnetic Separation of Histidine-tagged Proteins Using Fe3O4/Cu-apatite Nanoparticles[J]. Journal of Inorganic Biochemistry, 2016, 156: 49–54

    Article  CAS  Google Scholar 

  12. Das P, Jana NR. Length-Controlled Synthesis of Calcium Phosphate Nanorod and Nanowire and Application in Intracellular Protein Delivery[J]. ACS Applied Materials & Interfaces, 2016, 8: 8 710–8 720

    Article  CAS  Google Scholar 

  13. Heng C, Zheng X, Liu M, et al. Fabrication of Luminescent Hydroxy-Apatite Nanorods Through Surface-initiated RAFT Polymerization: Characterization, Biological Imaging and Drug Delivery Applications[J]. Applied Surface Science, 2016, 386: 269–275

    Article  CAS  Google Scholar 

  14. Zheng X, Liu M, Hui J, et al. Ln(3+)-doped Hydroxyapatite Nanocrystals: Controllable Synthesis and Cell Imaging[J]. Physical Chemistry Chemical Physics: PCCP, 2015, 17: 20 301–20 307

    Article  CAS  Google Scholar 

  15. Boanini E, Gazzano M, Bigi A. Ionic Substitutions in Calcium Phosphates Synthesized at Low Temperature[J]. Acta Biomaterialia, 2010, 6: 1 882–1 894

    Article  CAS  Google Scholar 

  16. Ma B, Shin WS, Oh S, et al. Adsorptive Removal of Co and Sr Ions from Aqueous Solution by Synthetic Hydroxyapatite Nanoparticles[J]. Separation Science and Technology, 2010, 45(4): 453–462

    Article  CAS  Google Scholar 

  17. Aina V, Lusvardi G, Annaz B, et al. Magnesium- and Strontium-co-substituted Hydroxyapatite: The Effects of Doped-ions on the Structure and Chemico-physical Properties[J]. Journal of Materials Science Materials in Medicine, 2012, 23: 2 867–2 879

    Article  CAS  Google Scholar 

  18. Cox SC, Jamshidi P, Grover LM, et al. Preparation and Characterisation of Nanophase Sr, Mg, and Zn Substituted Hydroxyapatite by Aqueous Precipitation[J]. Materials Science & Engineering C, Materials for Biological Applications, 2014, 35: 106–114

    Article  CAS  Google Scholar 

  19. Moreira MP, de Almeida Soares GD, Dentzer J, et al. Synthesis of Magnesium- and Manganese-doped Hydroxyapatite Structures Assisted by the Simultaneous Incorporation of Strontium[J]. Materials science & Engineering C, Materials for Biological Applications, 2016, 61: 736–743

    Article  CAS  Google Scholar 

  20. Ratnayake JTB, Mucalo M, Dias GJ. Substituted Hydroxyapatites for Bone Regeneration: A Review of Current Trends[J]. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 2017, 105: 1 285–1 299

    Article  CAS  Google Scholar 

  21. Scudeller LA, Mavropoulos E, Tanaka MN, et al. Effects on Insulin Adsorption Due to Zinc and Strontium Substitution in Hydroxyapatite[J]. Materials Science & Engineering C, Materials for Biological Applications, 2017, 79: 802–811

    Article  CAS  Google Scholar 

  22. Niu N, Wang D, Huang S, et al. Controlled Synthesis of Luminescent F-substituted Strontium Hydroxyapatite with Hierarchical Structures for Drug Delivery[J]. Cryst. Eng. Comm., 2012, 14: 1 744

    Article  CAS  Google Scholar 

  23. Hu YY, Rawal A, Schmidt-Rohr K. Strongly Bound Citrate Stabilizes the Apatite Nanocrystals in Bone[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107: 22 425–22 429

    Article  CAS  Google Scholar 

  24. Jin X, Chen X, Cheng Y, et al. Effects of Hydrothermal Temperature and Time on Hydrothermal Synthesis of Colloidal Hydroxyapatite Nanorods in the Presence of Sodium Citrate[J]. Journal of Colloid and Interface Science, 2015, 450: 151–158

    Article  CAS  Google Scholar 

  25. Jin X, Zhuang J, Zhang Z, et al. Hydrothermal Synthesis of Hydroxy-apatite Nanorods in the Presence of Sodium Citrate and Its Aqueous Colloidal Stability Evaluation in Neutral pH[J]. Journal of Colloid and Interface Science, 2015, 443: 125–130

    Article  CAS  Google Scholar 

  26. Okada M, Furuzono T. Low-temperature Synthesis of Nanoparticle-assembled, Transparent, and Low-crystallized Hydroxyapatite Blocks[J]. Journal of Colloid and Interface Science, 2011, 360: 457–462

    Article  CAS  Google Scholar 

  27. Delgado-Lopez JM, Iafisco M, Rodriguez I, et al. Crystallization of Bioinspired Citrate-functionalized Nanoapatite with Tailored Carbonate Content[J]. Acta Biomaterialia, 2012, 8: 3 491–3 499

    Article  CAS  Google Scholar 

  28. Delgado-Lopez JM, Frison R, Cervellino A, et al. Crystal Size, Morphology, and Growth Mechanism in Bio-Inspired Apatite Nanocrystals[J]. Advanced Functional Materials, 2014, 24: 1 090–1 099

    Article  CAS  Google Scholar 

  29. Jensen ACS, Ibsen CJS, Sutherland D, et al. Transparent Aggregates of Nanocrystalline Hydroxyapatite[J]. Crystal Growth & Design, 2014, 14: 6 343–6 349

    Article  CAS  Google Scholar 

  30. Onsager L. The Effects of Shape on the Interaction of Colloidal Particles[J]. Annals of the New York Academy of Sciences, 1949, 51: 627–659

    Article  CAS  Google Scholar 

  31. Gabriel JCP, Davidson P. New Trends in Colloidal Liquid Crystals Based on Mineral Moieties[J]. Advanced Materials, 2000, 12: 9–20

    Article  CAS  Google Scholar 

  32. Davidson P, Gabriel J-CP. Mineral Liquid Crystals[J]. Current Opinion in Colloid & Interface Science, 2005, 9: 377–383

    Article  CAS  Google Scholar 

  33. Lekkerkerker HN, Vroege GJ. Liquid Crystal Phase Transitions in Suspensions of Mineral Colloids: New Life from Old Roots[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371: 20120263

    Article  CAS  Google Scholar 

  34. Nakayama M, Kajiyama S, Kumamoto A, et al. Stimuli-responsive Hydroxyapatite Liquid Crystal with Macroscopically Controllable Ordering and Magneto-optical Functions[J]. Nature Communications, 2018, 9: 568 (doi: 101038/S41467-018-02932-7)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjun Tan  (谭军军).

Additional information

Funded by the National Natural Science Foundation of China (51402097) and the Natural Science Foundation of Hubei Province (No. 2018CFB710)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., Zhang, Y., Liu, W. et al. Preparation of Sr-substituted Hydroxyapatite Nanorods for Liquid Crystal Phase Transition. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 35, 441–448 (2020). https://doi.org/10.1007/s11595-020-2276-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-020-2276-7

Key words

Navigation