Skip to main content
Log in

The significance of fillers in composite polymer electrolytes for optimizing lithium battery

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Solid polymer electrolytes constructed from polymers have high safety, outstanding thermal stability, and minimal flammability as their merits. Many researchers have been working on creating high-performance Li-based batteries composed of solid polymers. Composite polymer electrolyte (CPEs) electrochemical characteristics, which might include conductivity of ions, ion transfer numbers, and electrochemical durability, play an essential role when assessing the performance of energy conservation and conversion systems. Inorganic additions may enhance ionic conductivity by producing an ion transport percolation network. Additionally, the most effective filler composition can improve CPE electrochemical process stability, diminishing adverse responses and deterioration throughout gadget operations. In this article, we talk about active filler-based composites of polymers that make excellent solid electrolytes for the large-scale production of solid-state battery packs. We review the analysis and performance of active filler-based composite polymer electrolytes and look into the design of high-performance composite electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Vickraman P, Reddy BJ (2019) Performance of ferrocyanic PVDF-co-HEP micro composite electrolytes cum separators for Li-ion batteries. AIP Conf Proc 2115

  2. Hu XL, Hou GM, Zhang MQ, Rong MZ, Ruan WH, Giannelis EP (2012) A new nanocomposite polymer electrolyte based on poly (vinyl alcohol) incorporating hyper grafted nano-silica. J Mater Chem 22(36):18961–18967

    CAS  Google Scholar 

  3. Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657

    ADS  CAS  PubMed  Google Scholar 

  4. Goodenough JB (2015) Energy storage materials: a perspective. Energy Storage Mater:158–161

  5. Li X, Wang Y, Xi K, Yu W, Feng J, Gao G, Wu H, Jiang Q, Abdelkader A, Hua W, Zhong G (2022) Quasi-solid-state ion-conducting arrays composite electrolytes with fast ion transport vertical-aligned interfaces for all-weather practical lithium-metal batteries. Nanomicro Lett 14(1):210

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chew KW, Ng TC, How ZH (2013) Conductivity and microstructure study of PLA-based polymer electrolyte salted with lithium perchloride, LiClO4. Int J Electrochem Sci 8(5)

  7. Verma ML, Sahu HD (2017) Study on ionic conductivity and dielectric properties of PEO-based solid nanocomposite polymer electrolytes. Ionics 23(9):2339–2350

    CAS  Google Scholar 

  8. Zhou D, Shanmukaraj D, Tkacheva A, Armand M, Wang G (2019) Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5(9):2326–2352

    CAS  Google Scholar 

  9. Pandurangan S, Kaliyappan K, Ramaswamy AP, Ramaswamy M (2021) Polymer-garnet composite electrolyte based on comb-like structured polymer for lithium-metal batteries. Mater Today Energy 21:100836

    CAS  Google Scholar 

  10. Yao P, Yu H, Ding Z, Liu Y, Lu J, Lavorgna M, Wu J, Liu X (2019) Review on polymer-based composite electrolytes for lithium batteries. Front Chem 7:522

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ding WQ, Lv F, Xu N, Wu MT, Liu J, Gao XP (2021) Polyethylene oxide-based solid-state composite polymer electrolytes for rechargeable lithium batteries. ACS Appl Energy Mater 4(5):4581–4601

    CAS  Google Scholar 

  12. Merrill LC, Chen XC, Zhang Y, Ford HO, Lou K, Zhang Y, Yang G, Wang Y, Wang Y, Schaefer JL, Dudney NJ (2020) Polymer–ceramic composite electrolytes for lithium batteries: a comparison between the single-ion-conducting polymer matrix and its counterpart. ACS Appl Energy Mater 3(9):8871–8881

    CAS  Google Scholar 

  13. Gagliardi GG, Ibrahim A, Borello D, El-Kharouf A (2020) Composite polymers development and application for polymer electrolyte membrane technologies—a review. Molecules 25(7):1712

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zeis R (2015) Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells. Beilstein J Nanotechnol 6(1):68–83

    PubMed  PubMed Central  Google Scholar 

  15. Zhou Z, Zholobko O, Wu XF, Aulich T, Thakare J, Hurley J (2020) Polybenzimidazole-based polymer electrolyte membranes for high-temperature fuel cells: current status and prospects. Energies 14(1):135

    Google Scholar 

  16. Yusoff NF, Idris N (2017) Ionic liquid based PVDF/PMMA gel polymer electrolyte for lithium rechargeable battery. J Mech Eng Sci 11:3152–3165

    CAS  Google Scholar 

  17. Akitomo F, Sasabe T, Yoshida T, Naito H, Kawamura K, Hirai S (2019) Investigation of effects of high temperature and pressure on a polymer electrolyte fuel cell with polarization analysis and X-ray imaging of liquid water. J Power Sources 431:205–209

    CAS  Google Scholar 

  18. Li Y, Zhang W, Dou Q, Wong KW, Ng KM (2019) Li 7 La 3 Zr 2 O 12 ceramic nanofiber-incorporated composite polymer electrolytes for lithium metal batteries. J Mater Chem A 7(7):3391–3398

    CAS  Google Scholar 

  19. Li Z, Huang HM, Zhu JK, Wu JF, Yang H, Wei L, Guo X (2018) Ionic conduction in composite polymer electrolytes: case of PEO: Ga-LLZO composites. ACS Appl Mater Interfaces 11(1):784–791

    ADS  PubMed  Google Scholar 

  20. Fu J, Li Z, Zhou X, Guo X (2022) Ion transport in composite polymer electrolytes. Mater Adv 3(9):3809–3819

    CAS  Google Scholar 

  21. Lagadec MF, Zahn R, Wood V (2019) Characterization and performance evaluation of lithium-ion battery separators. Nat Energy 4(1):16–25

    ADS  CAS  Google Scholar 

  22. Commarieu B, Paolella A, Daigle JC, Zaghib K (2018) Toward high lithium conduction in solid polymer and polymer–ceramic batteries. Curr Opinion Electrochem 9:56–63

    CAS  Google Scholar 

  23. Zhang H, Li C, Piszcz M, Coya E, Rojo T, Rodriguez-Martinez LM, Armand M, Zhou Z (2017) Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem Soc Rev 46(3):797–815

    CAS  PubMed  Google Scholar 

  24. Yang H, Wu N (2022) Ionic conductivity and ion transport mechanisms of solid-state lithium-ion battery electrolytes: a review. Energy Sci Eng 0(5):1643–1671

    CAS  Google Scholar 

  25. Yang X, Liu J, Pei N, Chen Z, Li R, Fu L, Zhang P, Zhao J (2023) The critical role of fillers in composite polymer electrolytes for a lithium battery. Nanomicro Lett 15(1):1–37

    ADS  Google Scholar 

  26. Wang W, Alexandridis P (2016) Composite polymer electrolytes: nanoparticles affect structure and properties. Polymers 8(11):387

    PubMed  PubMed Central  Google Scholar 

  27. Li S, Yang B, Wang C, Wang J, Feng Y, Yan B, Xiong Z, Du Y (2017) A facile and green fabrication of Cu2O-Au/NG nanocomposites for sensitive electrochemical determination of rutin. J Electroanal Chem 786:20–27

    CAS  Google Scholar 

  28. Fan LZ, He H, Nan CW (2021) Tailoring inorganic–polymer composites for the mass production of solid-state batteries. Nat Rev Mater 6(11):1003–1019

    ADS  CAS  Google Scholar 

  29. Liu C, Wang J, Kou W, Yang Z, Zhai P, Liu Y, Wu W, Wang J (2021) A flexible, ion-conducting solid electrolyte with vertically bicontinuous transfer channels toward high-performance all-solid-state lithium batteries. Chem Eng J 404:126517

    CAS  Google Scholar 

  30. Lu Z, Peng L, Rong Y, Wang E, Shi R, Yang H, Xu Y, Yang R, Jin C (2022) Enhanced electrochemical properties and optimized Li+ transmission pathways of PEO/LLZTO-based composite electrolytes modified by supramolecular combination. Energy Environ Mater:12498

  31. Huo S, Sheng L, Xue W, Wang L, Xu H, Zhang H, He X (2013) Challenges of polymer electrolyte with wide electrochemical window for high energy solid-state lithium batteries. Info Mat 5(3):12394

    Google Scholar 

  32. Chen L, Li Y, Li SP, Fan LZ, Nan CW, Goodenough JB (2018) PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 46:176–184

    CAS  Google Scholar 

  33. Szczęsna-Chrzan A, Marczewski M, Syzdek J, Kochaniec MK, Smoliński M, Marcinek M (2023) Lithium polymer electrolytes for novel batteries application: the review perspective. Appl Phys A 129(1):37

    ADS  Google Scholar 

  34. Zhang X, Liu T, Zhang S, Huang X, Xu B, Lin Y, Xu B, Li L, Nan CW, Shen Y (2017) Synergistic coupling between Li6. 75La3Zr1. 75Ta0. 25O12 and poly (vinylidene fluoride) induce high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J Am Chem Soc 139(39):13779–13785

    CAS  PubMed  Google Scholar 

  35. Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J (2017) Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33:363–386

    CAS  Google Scholar 

  36. Zhang B, Tan R, Yang L, Zheng J, Zhang K, Mo S, Lin Z, Pan F (2018) Mechanisms and properties of ion-transport in inorganic solid electrolytes. Energy Stor Mater 10:139–159

    Google Scholar 

  37. Long L, Wang S, Xiao M, Meng Y (2016) Polymer electrolytes for lithium polymer batteries. J Mater Chem A 4(26):10038–10069

    CAS  Google Scholar 

  38. Xue Z, He D, Xie X (2015) Poly (ethylene oxide)-based electrolytes for lithium-ion batteries. J Mater Chem A 3(38):19218–19253

    CAS  Google Scholar 

  39. Yang Q, Wang A, Luo J, Tang W (2022) Improving ionic conductivity of polymer-based solid electrolytes for lithium metal batteries. Chin J Chem Eng 43:202–215

    CAS  Google Scholar 

  40. Zhang D, Meng X, Hou W, Hu W, Mo J, Yang T, Zhang W, Fan Q, Liu L, Jiang B, Chu L (2023) Solid polymer electrolytes: ion conduction mechanisms and enhancement strategies. Nano Res Energy 2(2):e9120050

    Google Scholar 

  41. Yang X, Liu J, Pei N, Chen Z, Li R, Fu L, Zhang P, Zhao J (2023) The critical role of fillers in composite polymer electrolytes for lithium battery. Nanomicro Lett 15(1):74

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Borodin O, Smith GD (2006) Mechanism of ion transport in amorphous poly (ethylene oxide)/LiTFSI from molecular dynamics simulations. Macromolecules 39(4):1620–1629

    ADS  CAS  Google Scholar 

  43. Mao G, Perea RF, Howells WS, Price DL, Saboungi ML (2000) Relaxation in polymer electrolytes on the nanosecond timescale. Nature 405(6783):163–165

    ADS  CAS  PubMed  Google Scholar 

  44. Aziz SB, Woo TJ, Kadir MF, Ahmed HM (2018) A conceptual review on polymer electrolytes and ion transport models. J Sci Adv Mater Dev 3(1):1–7

    Google Scholar 

  45. Ratner MA, Johansson P, Shriver DF (2000) Polymer electrolytes: ionic transport mechanisms and relaxation coupling. Mrs Bull 25(3):31–37

    CAS  Google Scholar 

  46. Utpalla P, Sharma SK, Sudarshan K, Deshpande SK, Sahu M, Pujari PK (2020) Investigating the correlation of segmental dynamics, free volume characteristics, and ionic conductivity in poly (ethylene oxide)-based electrolyte: a broadband dielectric and positron annihilation spectroscopy study. J Phys Chem C 124(8):4489–4501

    CAS  Google Scholar 

  47. Devaux D, Bouchet R, Glé D, Denoyel RJ (2012) Mechanism of ion transport in PEO/LiTFSI complexes: effect of temperature, molecular weight, and end groups. Solid State Ion 227:119–127

    CAS  Google Scholar 

  48. Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77(14):3701–3717

    CAS  Google Scholar 

  49. Arya A, Sharma AL (2017) Polymer electrolytes for lithium-ion batteries: a critical study. Ionics 23(3):497–540

    CAS  Google Scholar 

  50. Shukla N, Thakur AK, Shukla A, Marx DT (2014) Ion conduction mechanism in solid polymer electrolyte: applicability of almond-west formalism. Int J Electrochem Sci9(12):7644-7659

  51. Xu J (2022) critical review on cathode–electrolyte interphase toward high-voltage cathodes for Li-ion batteries. Nano Lett 14(1):166

    MathSciNet  Google Scholar 

  52. Gao Y, Zhang B (2023) Probing the mechanically stable solid electrolyte interphase and the implications in design strategies. Adv Mater 35(18):2205421

    CAS  Google Scholar 

  53. Maurya DK, Dhanusuraman R, Guo Z, Angaiah S (2022) Composite polymer electrolytes: progress, challenges, and future outlook for sodium-ion batteries. Adv Compos Hybrid Mater 5(4):2651–2674

    CAS  Google Scholar 

  54. Chen R, Qu W, Guo X, Li L, Wu F (2016) The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Mater Horiz 3(6):487–516

    CAS  Google Scholar 

  55. Liu S, Liu W, Ba D, Zhao Y, Ye Y, Li Y, Liu J (2023) Filler-integrated composite polymer electrolyte for solid-state lithium batteries. Adv Mater 35(2):2110423

    CAS  Google Scholar 

  56. Zhou Q, Ma J, Dong S, Li X, Cui G (2019) Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv Mater 31(50):1902029

    CAS  Google Scholar 

  57. Xu S, Hu L (2020) Towards a high-performance garnet-based solid-state Li metal battery: a perspective on recent advances. J Power Sources 472:228571

    CAS  Google Scholar 

  58. Wan Z, Lei D, Yang W, Liu C, Shi K, Hao X, Shen L, Lv W, Li B, Yang QH, Kang F (2019) Low resistance–integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder. Adv Funct Mater 29(1):1805301

    Google Scholar 

  59. Tao X, Liu Y, Liu W, Zhou G, Zhao J, Lin D, Zu C, Sheng O, Zhang W, Lee HW, Cui Y (2017) Solid-state lithium–sulfur batteries operated at 37 C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Lett 17(5):2967–2972

    ADS  CAS  PubMed  Google Scholar 

  60. Liang JY, Zeng XX, Zhang XD, Wang PF, Ma JY, Yin YX, Wu XW, Guo YG, Wan LJ (2018) Mitigating interfacial potential drop of cathode–solid electrolyte via ionic conductor layer to enhance interface dynamics for solid batteries. J Am Chem Soc 140(22):6767–6770

    CAS  PubMed  Google Scholar 

  61. Song X, Wang C, Chen J, Xin S, Yuan D, Wang Y, Dong K, Yang L, Wang G, Zhang H, Zhang S (2022) Unraveling the synergistic coupling mechanism of Li+ transport in an “ionogel-in-ceramic” hybrid solid electrolyte for rechargeable lithium metal battery. Adv Funct Mater 32(10):2108706

    CAS  Google Scholar 

  62. Zhang J, Zang X, Wen H, Dong T, Chai J, Li Y, Chen B, Zhao J, Dong S, Ma J, Yue L (2017) High-voltage and free-standing poly (propylene carbonate)/Li 6.75 La 3 Zr 1.75 Ta 0.25 O 12 composite solid electrolyte for wide temperature range and flexible solid lithium-ion battery. J Mater Chem A 5(10):4940–4948

    CAS  Google Scholar 

  63. Zhao CZ, Zhang XQ, Cheng XB, Zhang R, Xu R, Chen PY, Peng HJ, Huang JQ, Zhang Q (2017) An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc Natl Acad Sci 114(42):11069–11074

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu W, Liu N, Sun J, Hsu PC, Li Y, Lee HW, Cui Y (2015) Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett 15(4):2740–2745

    ADS  CAS  PubMed  Google Scholar 

  65. Dong W, Zeng XX, Zhang XD, Li JY, Shi JL, Xiao Y, Shi Y, Wen R, Yin YX, Wang TS, Wang CR (2018) Gradiently polymerized solid electrolyte meets with micro-/nanostructured cathode array. ACS Appl Mater Interfaces 10(21):18005–18011

    CAS  PubMed  Google Scholar 

  66. Xin S, You Y, Wang S, Gao HC, Yin YX, Guo YG (2017) Solid-state lithium metal batteries promoted by nanotechnology: progress and prospects. ACS Energy Lett 2(6):1385–1394

    CAS  Google Scholar 

  67. Lin D, Liu W, Liu Y, Lee HR, Hsu PC, Liu K, Cui Y (2016) High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly (ethylene oxide). Nano Lett 16(1):459–465

    ADS  CAS  PubMed  Google Scholar 

  68. Li S, Zhang SQ, Shen L, Liu Q, Ma JB, Lv W, He YB, Yang QH (2020) Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv Sci 7(5):1903088

    CAS  Google Scholar 

  69. Wang L, Wu Z, Zou J, Gao P, Niu X, Li H, Chen L (2019) Li-free cathode materials for high energy density lithium batteries. Joule 3(9):2086–2102

    CAS  Google Scholar 

  70. Dey A, Karan S, De SK (2013) Effect of nano additives on ionic conductivity of solid polymer electrolyte. 51(05):281–288

  71. Wu M, Song J, Zhu X, Zhan H, Tian T, Wang R, Lei J, Tang H (2023) Three-dimensional hierarchical composite polymer electrolyte with enhanced interfacial compatibility for all-solid-state lithium metal batteries. Sci China Mater 66(2):522–530

    CAS  Google Scholar 

  72. Shi Y, Li B, Zhu Q, Shen K, Tang W, Xiang Q, Chen W, Liu C, Luo J, Yang S (2020) MXene-based mesoporous nanosheets toward superior lithium-ion conductors. Adv Energy Mater 10(9):1903534

    CAS  Google Scholar 

  73. Aravindan V, Gnanaraj J, Madhavi S, Liu HK (2011) Lithium-ion conducting electrolyte salts for lithium batteries. Chem Eur J 17(51):14326–14346

    CAS  PubMed  Google Scholar 

  74. Xia S, Wu X, Zhang Z, Cui Y, Liu W (2019) Practical challenges and future perspectives of all-solid-state lithium-metal batteries. Chem 5(4):753–785

    CAS  Google Scholar 

  75. Gauthier M, Carney TJ, Grimaud A, Giordano L, Pour N, Chang HH, Fenning DP, Lux SF, Paschos O, Bauer C, Maglia F (2015) Electrode–electrolyte interface in Li-ion batteries: current understanding and new insights. J Phys Chem Lett 6(22):4653–4672

    CAS  PubMed  Google Scholar 

  76. Pan Q, Barbash D, Smith DM, Qi H, Gleeson SE, Li CY (2017) Correlating electrode–electrolyte interface and battery performance in hybrid solid polymer electrolyte-based lithium metal batteries. Adv Energy Mater 7(22):1701231

    Google Scholar 

  77. Duan H, Fan M, Chen WP, Li JY, Wang PF, Wang WP, Shi JL, Yin YX, Wan LJ, Guo YG (2019) Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries. Adv Mater 31(12):1807789

    Google Scholar 

  78. Shi Y, Wan J, Liu GX, Zuo TT, Song YX, Liu B, Guo YG, Wen R, Wan LJ (2022) Interfacial evolution of lithium dendrites and their solid electrolyte interphase shells of quasi-solid-state lithium-metal batteries. Angew Chem Int Ed 59(41):18120–18255

    Google Scholar 

  79. Ibrahim S, Yassin MM, Ahmad R, Johan MR (2011) Effects of various LiPF 6 salt concentrations on PEO-based solid polymer electrolytes. Ionics 399-405

  80. Zhou W, Wang Z, Pu Y, Li Y, Xin S, Li X, Chen J, Goodenough JB (2019) Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries. Adv Mater 31(4):1805574

    Google Scholar 

  81. Barbosa PC, Rodrigues LC, Silva MM, Smith MJ (2011) Characterization of pTMCnLiPF6 solid polymer electrolytes. Solid State Ion 193(1):39–42

    CAS  Google Scholar 

  82. Varishetty MM, Qiu W, Gao Y, Chen W (2010) Structure, electrical and optical properties of (PVA/LiAsF6) polymer composite electrolyte films. Polym Eng Sci 50(5):878–884

    CAS  Google Scholar 

  83. Itoh T, Nakamura K, Uno T, Kubo M (2018) Thermal and electrochemical properties of poly (2, 2-dimethoxypropylene carbonate)-based solid polymer electrolyte for polymer battery. Solid State Ion 317:69–75

    CAS  Google Scholar 

  84. Appetecchi GB, Zane D, Scrosati B (2004) PEO-based electrolyte membranes based on LiBC4 O 8 Salt. J Electrochem Soc 151(9):A1369

    CAS  Google Scholar 

  85. Chong WG, Osman Z (2014) The effect of carbonate-phthalate plasticizers on structural, morphological, and electrical properties of polyacrylonitrile-based solid polymer electrolytes. J Polymer Res 21:1–9

    CAS  Google Scholar 

  86. Tao SD, Li J, Hu R, Wang L, Chi Z (2021) Li T. 3Li2S-2MoS2 filled composite polymer PVDF-HFP/LiODFB electrolyte with excellent interface performance for lithium metal batteries. Appl Surf Sci 536:147794

    CAS  Google Scholar 

  87. Feng J, Wang L, Chen Y, Wang P, Zhang H, He X (2021) PEO-based polymer-ceramic hybrid solid electrolytes: a review. Nano Converg 8:1–2

    Google Scholar 

  88. Jiang K, Wang J, Zuo C, Li S, Li S, He D, Peng H, Xie X, Poli R, Xue Z (2020) Facile fabrication of polymer electrolytes via lithium salt-accelerated thiol-michael addition for lithium-ion batteries. Macromolecules 53(17):7450–7459

    ADS  CAS  Google Scholar 

  89. Wang C, Fu K, Kammampata SP, McOwen DW, Samson AJ, Zhang L, Hitz GT, Nolan AM, Wachsman ED, Mo Y, Thangadurai V (2020) Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem Rev 120(10):4257–4300

    CAS  PubMed  Google Scholar 

  90. Bashiri P, Rao TP, Naik VM, Nazri GA, Naik R (2019) AC conductivity studies of polyethylene oxide-garnet-type Li7La3Zr2O12 hybrid composite solid polymer electrolyte films. Solid State Ion 343:115089

    CAS  Google Scholar 

  91. Li L, Deng Y, Chen G (2020) Status and prospect of garnet/polymer solid composite electrolytes for all-solid-state lithium batteries. J Energy Chem 50:154–177

    CAS  Google Scholar 

  92. Gao Y, Sun S, Zhang X, Liu Y, Hu J, Huang Z, Gao M, Pan H (2021) Amorphous dual-layer coating: enabling high Li-ion conductivity of non-sintered garnet-type solid electrolyte. Adv Funct Mater 31(15):2009692

    CAS  Google Scholar 

  93. Yang T, Zheng J, Cheng Q, Hu YY, Chan CK (2017) Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology. ACS Appl Mater Interfaces 9(26):21773–21780

    CAS  PubMed  Google Scholar 

  94. Qin Z, Meng X, Xie Y, Qian D, Deng H, Mao D, Wan L, Huang Y (2021) Fast Li-ion transport pathways via 3D continuous networks in homogeneous garnet-type electrolyte for solid-state lithium batteries. Energy Stor Mater 43:190–201

    Google Scholar 

  95. Yi M, Liu T, Li J, Wang C, Mo Y, Wang X, Wei Y (2019) High Li-ion conductivity of Al-free Li 7-3 x Ga x La 3 Zr 2 O 12 solid electrolyte prepared by liquid-phase sintering. J Solid State Electrochem 23:1249–1256

    CAS  Google Scholar 

  96. Yu S, Schmidt RD, Garcia-Mendez R, Herbert E, Dudney NJ, Wolfenstine JB, Sakamoto J, Siegel DJ (2016) Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chem Mater 28(1):197–206

    CAS  Google Scholar 

  97. Li R, Guo S, Yu L, Wang L, Wu D, Li Y, Hu X (2019) Morphosynthesis of 3D macroporous garnet frameworks and perfusion of polymer-stabilized lithium salts for flexible solid-state hybrid electrolytes. Adv Mater Interfaces 6(10):1900200

    Google Scholar 

  98. Bae J, Li Y, Zhao F, Zhou X, Ding Y, Yu G (2018) Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries. Energy Stor Mater 15:46–52

    Google Scholar 

  99. Wang X, Hao X, Xia Y, Liang Y, Xia X, Tu J (2019) A polyacrylonitrile (PAN)-based double-layer multifunctional gel polymer electrolyte for lithium-sulfur batteries. J Membr Sci 582:37–47

    CAS  Google Scholar 

  100. Xu H, Zhang X, Jiang J, Li M, Shen Y (2020) Ultrathin Li7La3Zr2O12@ PAN composite polymer electrolyte with high conductivity for all-solid-state lithium-ion battery. Solid State Ion 347:115227

    CAS  Google Scholar 

  101. Gao L, Li J, Ju J, Cheng B, Kang W, Deng N (2020) Polyvinylidene fluoride nanofibers with embedded Li6. 4La3Zr1. 4Ta0. 6O12 fillers modified polymer electrolytes for high-capacity and long-life all-solid-state lithium metal batteries. Compos Sci Technol 200:108408

    CAS  Google Scholar 

  102. He K, Chen C, Fan R, Liu C, Liao C, Xu Y, Tang J, Li RK (2019) Polyethylene oxide/garnet-type Li6. 4La3Zr1. 4Nb0. 6O12 composite electrolytes with improved electrochemical performance for solid-state lithium rechargeable batteries. Compos Sci Technol 175:28–34

    CAS  Google Scholar 

  103. Song S, Wu Y, Tang W, Deng F, Yao J, Liu Z, Hu R, Alamusi WZ, Lu L, Hu N (2019) Composite solid polymer electrolyte with garnet nanosheets in poly (ethylene oxide). ACS Sustain Chem Eng 7(7):7163–7170

    CAS  Google Scholar 

  104. Xie Z, Wu Z, An X, Yue X, Xiaokaiti P, Yoshida A, Abudula A, Guan G (2020) A sandwich-type composite polymer electrolyte for all-solid-state lithium metal batteries with high areal capacity and cycling stability. J Membr Sci 596:117739

    CAS  Google Scholar 

  105. Song S, Qin X, Ruan Y, Li W, Xu Y, Zhang D, Thokchom J (2020) Enhanced performance of solid-state lithium-air batteries with continuous 3D garnet network added composite polymer electrolyte. J Power Sources 461:228146

    CAS  Google Scholar 

  106. Jiang T, He P, Wang G, Shen Y, Nan CW, Fan LZ (2020) Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries. Adv Energy Mater 10(12):1903376

    CAS  Google Scholar 

  107. Zhang J, Zhao N, Zhang M, Li Y, Chu PK, Guo X, Di Z, Wang X, Li H (2016) Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy 28:447–454

    CAS  Google Scholar 

  108. Choi JH, Lee CH, Yu JH, Doh CH, Lee SM (2015) Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix. J Power Sources 274:458–463

    CAS  Google Scholar 

  109. Zha W, Chen F, Yang D, Shen Q, Zhang L (2018) High-performance Li6. 4La3Zr1. 4Ta0. 6O12/Poly (ethylene oxide)/Succinonitrile composite electrolyte for solid-state lithium batteries. J Power Sources 397:87–94

    CAS  Google Scholar 

  110. Cheng SH, He KQ, Liu Y, Zha JW, Kamruzzaman M, Ma RL, Dang ZM, Li RK, Chung CY Electrochemical performance of all-solid-state lithium batteries using inorganic lithium garnets particulate reinforced PEO/LiClO4 electrolyte. Electrochim Acta 253:430–438

  111. Xia Y, Wang X, Xia X, Xu R, Zhang S, Wu J, Liang Y, Gu C, Tu J (2017) A newly designed composite gel polymer electrolyte based on poly (vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) for enhanced solid-state lithium-sulfur batteries. Chem Eur J 23(60):15203–15209

    CAS  PubMed  Google Scholar 

  112. Le HT, Ngo DT, Kalubarme RS, Cao G, Park CN, Park CJ (2016) Composite gel polymer electrolyte based on poly (vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) with modified aluminum-doped lithium lanthanum titanate (A-LLTO) for high-performance lithium rechargeable batteries. ACS Appl Mater Interfaces 8(32):20710–20719

    CAS  PubMed  Google Scholar 

  113. Deng Y, Eames C, Nguyen LH, Pecher O, Griffith KJ, Courty M, Fleutot B, Chotard JN, Grey CP, Islam MS, Masquelier C (2018) Crystal structures, local atomic environments, and ion diffusion mechanisms of scandium-substituted sodium superionic conductor (NASICON) solid electrolytes. Chem Mater 30(8):2618–2630

    CAS  Google Scholar 

  114. Kothari DH, Kanchan DK (2022) Inter-grain Li+ conduction in Sc and Y doped LATP compounds. Phys B Condens 627:413599

    CAS  Google Scholar 

  115. Kou Z, Miao C, Wang Z, Mei P, Zhang Y, Yan X, Jiang Y, Xiao W (2019) Enhanced ionic conductivity of novel composite polymer electrolytes with Li1. 3Al0. 3Ti1. 7 (PO4) 3 NASICON-type fast ion conductor powders. Solid State Ion 338:138–143

    ADS  CAS  Google Scholar 

  116. Yang J, Huang Z, Zhang P, Liu G, Xu X, Yao X (2019) Titanium dioxide doping toward high-lithium-ion-conducting Li1. 5Al0. 5Ge1. 5 (PO4) 3 glass-ceramics for all-solid-state lithium batteries. ACS Appl Energy Mater 2(10):7299–7305

    CAS  Google Scholar 

  117. Jin Y, Liu C, Zong X, Li D, Fu M, Tan S, Xiong Y, Wei J (2020) Interface engineering of Li1. 3Al0. 3Ti1. 7 (PO4) 3 ceramic electrolytes via multifunctional interfacial layer for all-solid-state lithium batteries. J Power Sources 460:228125

    CAS  Google Scholar 

  118. Kou Z, Miao C, Wang Z, Xiao W (2019) Novel NASICON-type structural Li1. 3Al0. 3Ti1. 7SixP5 (3-0.8 x) O12 solid electrolytes with improved ionic conductivity for lithium-ion batteries. Solid State Ionics 343:115090

  119. Zhao E, Guo Y, Xin Y, Xu G, Guo X (2020) Enhanced electrochemical properties and interfacial stability of poly (ethylene oxide) solid electrolyte incorporating nanostructured Li1. 3Al0. 3Ti1. 7 (PO4) 3 fillers for all-solid-state lithium-ion batteries. Int J Energy Res 45(5):6876–6887

    Google Scholar 

  120. Dong GH, Mao YQ, Yang GM, Li YQ, Song SF, Xu CH, Huang P, Hu N, Fu SY (2021) High-strength poly (ethylene oxide) composite electrolyte reinforced with glass fiber and ceramic electrolyte simultaneously for structural energy storage. ACS Appl Energy Mater 4(4):4038–4049

    CAS  Google Scholar 

  121. Bonizzoni S, Ferrara C, Berbenni V, Anselmi-Tamburini U, Mustarelli P, Tealdi C (2019) NASICON-type polymer-in-ceramic composite electrolytes for lithium batteries. Phys Chem Chem Phys 21(11):6142–6149

    CAS  PubMed  Google Scholar 

  122. Wang X, Hao X, Xia Y, Liang Y, Xia X, Tu J (2019) A polyacrylonitrile (PAN)-based double-layer multifunctional gel polymer electrolyte for lithium-sulfur batteries. J Membr Sci 582:37–47

    CAS  Google Scholar 

  123. Liu L, Chu L, Jiang B, Li M (2019) Li1. 4Al0. 4Ti1. 6 (PO4) 3 nanoparticle-reinforced solid polymer electrolytes for all-solid-state lithium batteries. Solid State Ion 331:89–95

    CAS  Google Scholar 

  124. Yu X, Li J, Manthiram A (2020) Rational design of a laminated dual-polymer/polymer–ceramic composite electrolyte for high-voltage all-solid-state lithium batteries. ACS Mater Lett 2(4):317–324

    CAS  Google Scholar 

  125. Aliahmad N, Shrestha S, Varahramyan K, Agarwal M (2016) Poly (vinylidene fluoride-hexafluoropropylene) polymer electrolyte for paper-based and flexible battery applications. AIP Adv 6(6):065206

    ADS  Google Scholar 

  126. Pareek T, Dwivedi S, Ahmad SA, Badole M, Kumar S (2020) Effect of NASICON-type LiSnZr (PO4) 3 ceramic filler on the ionic conductivity and electrochemical behavior of PVDF based composite electrolyte. J Alloys Compd 824:153991

    CAS  Google Scholar 

  127. Zhou Q, Li Q, Liu S, Yin X, Huang B, Sheng M (2021) High Li-ion conductive composite polymer electrolytes for all-solid-state Li-metal batteries. J Power Sources 482:228929

    CAS  Google Scholar 

  128. Wang W, Yi E, Fici AJ, Laine RM, Kieffer J (2017) Lithium-ion conducting poly (ethylene oxide)-based solid electrolytes containing active or passive ceramic nanoparticles. J Phys Chem C 121(5):2563–2573

    CAS  Google Scholar 

  129. Siyal SH, Shah SS, Najam T, Javed MS, Imran M, Lan JL (2021) Significant reduction in interface resistance and super-enhanced performance of the lithium-metal battery by in situ construction of poly (vinylidene fluoride)-based solid-state membrane with dual ceramic fillers. ACS Appl Energy Mater 4(8):8604–8614

    CAS  Google Scholar 

  130. Huang Y, Zhang Z, Gao H, Huang J, Li C (2020) Li1. 5Al0. 5Ti1. 5 (PO4) 3 enhanced polyethylene oxide polymer electrolyte for all-solid-state lithium batteries. Solid State Ion 356:115437

    CAS  Google Scholar 

  131. Chen SY, Hsieh CT, Zhang RS, Mohanty D, Gandomi YA, Hung IM (2022) Hybrid solid-state electrolytes blending NASICON-type Li1+ xAlxTi2–x (PO4) 3 with poly (vinylidene fluoride-co-hexafluoropropylene) for lithium metal batteries. Electrochim Acta 427:140903

    CAS  Google Scholar 

  132. Yang S, Zhang Z, Shen L, Chen P, Gu Z, Chang M, He H, Yao X (2022) Gravity-driven Poly (ethylene glycol) @ Li1. 5Al0. 5Ge1. 5 (PO4) 3 asymmetric solid polymer electrolytes for all-solid-state lithium batteries. J Power Sources 518:230756

    CAS  Google Scholar 

  133. Sung BJ, Didwal PN, Verma R, Nguyen AG, Chang DR, Park CJ (2021) Composite solid electrolyte comprising poly (propylene carbonate) and Li1. 5Al0. 5Ge1. 5 (PO4) 3 for long-life all-solid-state Li-ion batteries. Electrochim Acta 392:139007

    CAS  Google Scholar 

  134. Zhai L, Zhang W, Gong H, Li Y, Gao M, Zhang X, Li D, Zhou Y, Dong C, Liu W, Jiang F (2022) Quasi-solid polymer electrolytes with fast interfacial transport for lithium metal batteries. Surf Interfaces 34:102299

    CAS  Google Scholar 

  135. Piana G, Bella F, Geobaldo F, Meligrana G, Gerbaldi C (2019) PEO/LAGP hybrid solid polymer electrolytes for ambient temperature lithium batteries by solvent-free,“one pot” preparation. J Energy Stor 26:100947

    Google Scholar 

  136. Jin Y, Liu C, Jia Z, Zong X, Li D, Fu M, Wei J, Xiong Y (2021) Building a highly functional Li1. 3Al0. 3Ti1. 7 (PO4) 3/poly (vinylidene fluoride) composite electrolyte for all-solid-state lithium batteries. J Alloys Compd 874:159890

    CAS  Google Scholar 

  137. Zhao W, Yi J, He P, Zhou H (2019) Solid-state electrolytes for lithium-ion batteries: fundamentals, challenges and perspectives. Electrochem Energy Rev 2:574–605

    CAS  Google Scholar 

  138. Choi HJ, Kim SY, Gong MK, Vignesh H, Aravindan V, Lee YG, Lee YS (2017) Tailored perovskite Li0. 33La0. 56TiO3 via an adipic acid-assisted solution process: a promising solid electrolyte for lithium batteries. J Alloys Compd 729:338–343

    CAS  Google Scholar 

  139. Bohnke O, Bohnke C, Fourquet JL (1996) Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate. Solid State Ion 91(1-2):21–31

    CAS  Google Scholar 

  140. Sun LL, Li YF, Li G, Wang LG, Tong YY (2019) Perovskite-type compounds in anion-substituted LiSr1− 0.5 xTiTaO6− xFx electrolyte for improving lithium-ion conduction. Ceram Int 45(2):2381–2384

    CAS  Google Scholar 

  141. Li R, Liao K, Zhou W, Li X, Meng D, Cai R, Shao Z (2019) Realizing fourfold enhancement in conductivity of perovskite Li0. 33La0. 557TiO3 electrolyte membrane via a Sr and Ta co-doping strategy. J Membr Sci 582:194–202

    CAS  Google Scholar 

  142. Zhu P, Yan C, Dirican M, Zhu J, Zang J, Selvan RK, Chung CC, Jia H, Li Y, Kiyak Y, Wu N (2018) Li 0.33 La 0.557 TiO 3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries. J Mater Chem A 6(10):4279–4285

    CAS  Google Scholar 

  143. Sun C, Alonso JA, Bian J (2021) Recent advances in perovskite-type oxides for energy conversion and storage applications. Adv Energy Mater 11(2):2000459

    CAS  Google Scholar 

  144. Sengodan S, Yeo HJ, Shin JY, Kim G (2011) Assessment of perovskite-type La0. 8Sr0. 2ScxMn1− xO3–δ oxides as anodes for intermediate-temperature solid oxide fuel cells using hydrocarbon fuels. J Power Sources 196(6):3083–3088

    CAS  Google Scholar 

  145. He KQ, Zha JW, Du P, Cheng SH, Liu C, Dang ZM, Li RK (2019) Tailored high cycling performance in a solid polymer electrolyte with perovskite-type Li 0.33 La 0.557 TiO 3 nanofibers for all-solid-state lithium-ion batteries. Dalton Trans 48(10):3263–3269

    CAS  PubMed  Google Scholar 

  146. Wei W, Li L, Zhang L, Hong J, He G (2018) An all-solid-state Li-organic battery with quinone-based polymer cathode and composite polymer electrolyte. Electrochem Commun 90:21–25

    ADS  CAS  Google Scholar 

  147. Pila CR, Cappe EP, Mohallem ND, Alves OL, Frutis MA, Sánchez-Ramírez N, Torresi RM, Ramírez HL, Laffita YM (2019) Effect of the LLTO nanoparticles on the conducting properties of PEO-based solid electrolyte. Solid State Sci 88:41–47

    ADS  Google Scholar 

  148. Zhu L, Zhu P, Fang Q, Jing M, Shen X, Yang L (2018) A novel solid PEO/LLTO-nanowires polymer composite electrolyte for solid-state lithium-ion battery. Electrochim Acta 292:718–726

    CAS  Google Scholar 

  149. Wang W, Lin B, Zhang H, Sun Y, Zhang X, Yang H (2019) Synthesis, morphology and electrochemical performances of perovskite-type oxide LaxSr1-xFeO3 nanofibers prepared by electrospinning. J Phys Chem Solid 124:144–150

    ADS  CAS  Google Scholar 

  150. Yang TQ, Wang C, Zhang WK, Xia Y, Gan YP, Huang H, He XP, Zhang J (2022) Composite polymer electrolytes reinforced by a three-dimensional polyacrylonitrile/Li0. 33La0. 557TiO3 nanofiber framework for room-temperature dendrite-free all-solid-state lithium metal battery. Rare Met 41(6):1870–1879

    CAS  Google Scholar 

  151. He K, Cheng SH, Hu J, Zhang Y, Yang H, Liu Y, Liao W, Chen D, Liao C, Cheng X, Lu Z (2021) In-situ intermolecular interaction in composite polymer electrolyte for ultralong life quasi-solid-state lithium metal batteries. Angew Chem Int Ed 60(21):12116–12123

    CAS  Google Scholar 

  152. Wang C, Zhang XW, Appleby AJ (2004) Solvent-free composite PEO-ceramic fiber/mat electrolytes for lithium secondary cells. J Electrochem Soc 152(1):A205

    Google Scholar 

  153. Chen S, Xie D, Liu G, Mwizerwa JP, Zhang Q, Zhao Y, Xu X, Yao X (2018) Sulfide solid electrolytes for all-solid-state lithium batteries: structure, conductivity, stability and application. Energy Stor Mater 14:58–74

    Google Scholar 

  154. Bai Y, Zhao Y, Li W, Meng L, Bai Y, Chen G (2020) Organic-inorganic multi-scale enhanced interfacial engineering of sulfide solid electrolyte in Li-S battery. Chem Eng J 396:125334

    CAS  Google Scholar 

  155. Wang S, Zhang X, Liu S, Xin C, Xue C, Richter F, Li L, Fan L, Lin Y, Shen Y, Janek J (2020) High-conductivity free-standing Li6PS5Cl/poly (vinylidene difluoride) composite solid electrolyte membranes for lithium-ion batteries. J Mater 6(1):70–76

    Google Scholar 

  156. Palmer MJ, Kalnaus S, Dixit MB, Westover AS, Hatzell KB, Dudney NJ, Chen XC (2020) A three-dimensional interconnected polymer/ceramic composite as a thin film solid electrolyte. Energy Stor Mater 26:242–249

    Google Scholar 

  157. Li Y, Arnold W, Thapa A, Jasinski JB, Sumanasekera G, Sunkara M, Druffel T, Wang H (2020) Stable and flexible sulfide composite electrolyte for high-performance solid-state lithium batteries. ACS Appl Mater Interfaces 12(38):42653–42659

    CAS  PubMed  Google Scholar 

  158. Lai C, Shu C, Li W, Wang L, Wang X, Zhang T, Yin X, Ahmad I, Li M, Tian X, Yang P (2020) Stabilizing a lithium metal battery by an in situ Li2S-modified interfacial layer via amorphous-sulfide composite solid electrolyte. Nano Lett 20(11):8273–8281

    ADS  CAS  PubMed  Google Scholar 

  159. Li M, Kolek M, Frerichs JE, Sun W, Hou X, Hansen MR, Winter M, Bieker P (2021) Investigation of polymer/ceramic composite solid electrolyte system: the case of PEO/LGPS composite electrolytes. ACS Sustain Chem Eng 9(34):11314–11322

    CAS  Google Scholar 

  160. Zhao Y, Wu C, Peng G, Chen X, Yao X, Bai Y, Wu F, Chen S, Xu X (2016) A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries. J Power Sources 301:47–53

    CAS  Google Scholar 

  161. Ma Z, Xue HG, Guo SP (2018) Recent achievements on sulfide-type solid electrolytes: crystal structures and electrochemical performance. J Mater Sci 53(6):3927–3393

    ADS  CAS  Google Scholar 

  162. Zhang D, Xu X, Qin Y, Ji S, Huo Y, Wang Z, Liu Z, Shen J, Liu J (2020) Recent progress in organic–inorganic composite solid electrolytes for all-solid-state lithium batteries. Chem Eur J 26(8):1720–1736

    CAS  PubMed  Google Scholar 

  163. Chen B, Huang Z, Chen X, Zhao Y, Xu Q, Long P, Chen S, Xu X (2016) A new composite solid electrolyte PEO/Li10GeP2S12/SN for an all-solid-state lithium battery. Electrochim Acta 210:905–914

    CAS  Google Scholar 

  164. Chen S, Wang J, Zhang Z, Wu L, Yao L, Wei Z, Deng Y, Xie D, Yao X, Xu X (2018) In-situ preparation of poly (ethylene oxide)/Li3PS4 hybrid polymer electrolyte with good nanofiller distribution for rechargeable solid-state lithium batteries. J Power Sources 387:72–80

    CAS  Google Scholar 

  165. Li X, Wang D, Wang H, Yan H, Gong Z, Yang Y (2019) Poly (ethylene oxide)–Li10SnP2S12 composite polymer electrolyte enables high-performance all-solid-state lithium-sulfur battery. ACS Appl Mater Interfaces 11(25):22745–22753

    CAS  PubMed  Google Scholar 

  166. Liu Q, Jiang L, Zheng P, Sun J, Liu C, Chai J, Li X, Zheng Y, Liu Z (2022) Recent advances in stability issues of inorganic solid electrolytes and composite solid electrolytes for all-solid-state batteries. Chem Rec 22(10):e202200116

    CAS  PubMed  Google Scholar 

  167. Ahmed SA, Pareek T, Dwivedi S, Badole M, Kumar S (2020) LiSn 2 (PO 4) 3-based polymer-in-ceramic composite electrolyte with high ionic conductivity for all-solid-state lithium batteries. J Solid State Electrochem 24:2407–2417

    CAS  Google Scholar 

  168. Dhatarwal P, Choudhary S, Sengwa RJ (2018) Electrochemical performance of Li+-ion conducting solid polymer electrolytes based on PEO–PMMA blend matrix incorporated with various inorganic nanoparticles for the lithium-ion batteries. Compos Commun 10:11–17

    Google Scholar 

  169. Singh P, Saroj AL (2021) Effect of SiO2 Nano-particles on plasticized polymer blend electrolytes: vibrational, thermal, and ionic conductivity study. Polym Plast Technol Mater 60(3):298–305

    CAS  Google Scholar 

  170. Jagan M, Vijayachamundeeswari SP (2023) A comprehensive investigation of lithium-based polymer electrolytes. J Polymer Res 30(6):250

    CAS  Google Scholar 

  171. Lyu W, He G, Liu T (2020) PEO-LITFSI-SiO2-SN system promotes the application of polymer electrolytes in all-solid-state lithium-ion batteries. ChemistryOpen 9(6):713–718

    PubMed  PubMed Central  Google Scholar 

  172. Yanilmaz M (2020) Evaluation of electrospun PVA/SiO2 nanofiber separator membranes for lithium-ion batteries. J Text Inst 111(3):447–452

    CAS  Google Scholar 

  173. Pal P, Ghosh A (2018) Influence of TiO2 nano-particles on charge carrier transport and cell performance of PMMA-LiClO4 based nano-composite electrolytes. Electrochim Acta 260:157–167

    CAS  Google Scholar 

  174. Vickraman P, Reddy BJ (2019) Performance of ferroceramic PVDF-co-HEP micro composite electrolytes cum separators for Li-ion batteries. AIP Conf Proc 2115(1):030533

    CAS  Google Scholar 

  175. Hema M, Tamilselvi P (2016) Lithium-ion conducting PVA: PVdF polymer electrolytes doped with nano SiO2 and TiO2 filler. J Phys Chem Solid 96:42–48

    ADS  Google Scholar 

  176. Chen HC, Lin FJ, Chen CC (2002) Polyacrylonitrile electrolytes 1. A novel high-conductivity composite polymer electrolyte based on PAN, LiClO 4, and a-Al 2 O 3. Solid State Ion 50:327–335

    Google Scholar 

  177. Liang B, Tang S, Jiang Q, Chen C, Chen X, Li S, Yan X (2015) Preparation and characterization of PEO-PMMA polymer composite electrolytes doped with nano-Al2O3. Electrochim Acta 169:334–341

    CAS  Google Scholar 

  178. Vijayakumar G, Karthick SN, Subramania A (2011) A new class of P (VdF-HFP)-CeO2-LiClO4-based composite microporous membrane electrolytes for Li-ion batteries. Int J Electrochem

  179. Chen H, Adekoya D, Hencz L, Ma J, Chen S, Yan C, Zhao H, Cui G, Zhang S (2020) Stable seamless interfaces and rapid ionic conductivity of Ca–CeO2/LiTFSI/PEO composite electrolyte for high-rate and high-voltage all-solid-state battery. Adv Energy Mater 10(21):2000049

    CAS  Google Scholar 

  180. Sharma J, Hashmi S (2019) Magnesium ion-conducting gel polymer electrolyte nanocomposites: Effect of active and passive nanofillers. Polym Compos 40(4):1295–1306

    CAS  Google Scholar 

  181. Vijayakumar G, Karthick SN, Paramasivam R, Ilamaran C (2012) Morphology and electrochemical properties of P (VdF-HFP)/MgO-based composite microporous polymer electrolytes for Li-ion polymer batteries. Polym-Plast Technol Eng 51(14):1427–1431

    CAS  Google Scholar 

  182. Premila R, Subbu C, Rajendran SJ (2018) Experimental investigation of nano filler TiO2 doped composite polymer electrolytes for lithium-ion batteries. Appl Surf Sci 449:426–434

    ADS  CAS  Google Scholar 

  183. He Z, Cao Q, Jing B, Wang X, Deng Y (2017) Gel electrolytes based on poly (vinylidene fluoride-co-hexafluoropropylene)/thermoplastic polyurethane/poly (methyl methacrylate) with in situ SiO 2 for polymer lithium batteries. RSC Adv 7(6):3240–3248

    ADS  CAS  Google Scholar 

  184. Lee L, Park SJ, Kim S (2013) Effect of nano-sized barium titanate addition on PEO/PVDF blend-based composite polymer electrolytes. Solid State Ion 234:19–24

    CAS  Google Scholar 

  185. Zhang Z, Wang Q, Li Z, Jiang Y, Zhao B, Han X (2019) Well-aligned BaTiO3 nanofibers via solution blow spinning and their application in lithium composite solid-state electrolyte. Mater Express 9(9):993–1000

    CAS  Google Scholar 

  186. Kumar R, Subramania A, Sundaram NK, Kumar GV, Baskaran I (2007) Effect of MgO nanoparticles on ionic conductivity and electrochemical properties of nanocomposite polymer electrolyte. J Membr Sci 300(1-2):104–110

    CAS  Google Scholar 

  187. Yu X, Manthiram A (2021) A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Stor Mater 34:282–300

    Google Scholar 

  188. Sasikumar M, Raja M, Krishna RH, Jagadeesan A, Sivakumar P, Rajendran S (2018) Influence of hydrothermally synthesized cubic-structured BaTiO3 ceramic fillers on ionic conductivity, mechanical integrity, and thermal behavior of P (VDF–HFP)/PVAc-based composite solid polymer electrolytes for lithium-ion batteries. J Phys Chem C 122(45):25741–25752

    CAS  Google Scholar 

  189. Hu J, Wang W, Zhou B, Feng Y, Xie X, Xue Z (2019) Poly (ethylene oxide)-based composite polymer electrolytes embedding with ionic bond modified nanoparticles for all-solid-state lithium-ion battery. J Membr Sci 575:200–208

    CAS  Google Scholar 

  190. Rao MM, Liu JS, Li WS, Liao YH, Liang Y, Zhao LZ (2010) Polyethylene-supported poly (acrylonitrile-co-methyl methacrylate)/nano-Al2O3 microporous composite polymer electrolyte for lithium-ion battery. J Solid State Electrochem 14:255–261

    CAS  Google Scholar 

  191. Arya A, Sharma AL (2018) Optimization of salt concentration and explanation of two peak percolation in blend solid polymer nanocomposite films. J Solid State Electrochem 22:2725–2745

    CAS  Google Scholar 

  192. Karuppasamy K, Antony R, Alwin S, Balakumar S, Sahaya Shajan X (2015) A review on PEO-based solid polymer electrolytes (SPEs) complexed with LiX (X= Tf, BOB) for rechargeable lithium-ion batteries. Mater Sci 807:41–63

    Google Scholar 

  193. Pavlidou S, Papaspyrides CD (2008) A review on polymer–layered silicate nanocomposites. Prog Polym Sci 33(12):1119–1198

    CAS  Google Scholar 

  194. Erceg M, Jozić D, Banovac I, Perinović S, Bernstorff S (2014) Preparation and characterization of melt intercalated poly (ethylene oxide)/lithium montmorillonite nanocomposites. Thermochem Acta 579:86–92

    CAS  Google Scholar 

  195. Park CH, Park M, Yoo SI, Joo SK (2006) A spin-coated solid polymer electrolyte for all-solid-state rechargeable thin-film lithium polymer batteries. J Power Sources 158(2):1442–1446

    CAS  Google Scholar 

  196. Patel G, Sureshkumar MB (2014) Preparation of PAM/PVA blending films by solution-cast technique and its characterization: a spectroscopic study. Iran Polym J 23:153–162

    CAS  Google Scholar 

  197. Ahmed F, Kumar S, Arshi N, Anwar MS, Su-Yeon L, Kil GS, Park DW, Koo BH, Lee CG (2011) Preparation and characterizations of polyaniline (PANI)/ZnO nanocomposites film using solution casting method. Thin Solid Films 519(23):8375–8378

    ADS  CAS  Google Scholar 

  198. Krebs FC (2009) Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol Energy Mater Sol Cells 93(4):394–412

    CAS  Google Scholar 

  199. Barick AK, Tripathy DK (2011) Preparation and characterization of thermoplastic polyurethane/organoclay nanocomposites by melt intercalation technique: effect of nano clay on morphology, mechanical, thermal, and rheological properties. J Appl Polym Sci 117(2):639–654

    Google Scholar 

  200. Tyona MD (2013) A theoritical study on spin coating technique. Adv Mat Res 2(4):195

    Google Scholar 

  201. Bordes P, Pollet E, Bourbigot S, Averous L (2008) Structure and properties of PHA/clay nano-bio composites prepared by melt intercalation. Macromol Chem Phys 209(14):1473–1484

    CAS  Google Scholar 

  202. Wilson MS, Gottesfeld S (1992) Thin-film catalyst layers for polymer electrolyte fuel cell electrodes. J Appl Electrochem 22(1):1–7

    CAS  Google Scholar 

  203. Agrawal RC, Chandra A (2007) Ion transport and electrochemical cell performance studies on hot press-synthesized Ag+ ion conducting electroactive polymeric membranes:(1− x) PEO: x [0.7 (0.75 AgI: 0.25 AgCl): 0.3 MI]. J Phys D Appl Phys 40(22):7024

    ADS  CAS  Google Scholar 

  204. Brinker CJ, Hurd AJ (1994) Fundamentals of sol-gel dip-coating. J Phys III 4(7):1231–1242

    Google Scholar 

  205. Birnie III DP. (2004) Spin coating technique. Sol-gel technologies for glass producers and users. 49-55.

  206. Firdaus CM, Rizam MS, Rusop M, Hidayah SR (2012) Characterization of ZnO and ZnO: TiO2 thin films prepared by sol-gel spray-spin coating technique. Procedia Eng 41:1367–1373

    CAS  Google Scholar 

  207. Puetz J, Aegerter MA (2004) Dip coating technique. Sol Gel Technol Glass Prod Users:37–48

  208. Brinker CJ (2013) Dip coating. In: chemical solution deposition of functional oxide thin films. Springer Vienna, Vienna, pp 233–261

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude and sincere appreciation to the Vellore Institute of Technology.

Author information

Authors and Affiliations

Authors

Contributions

M. Jagan: methodology, investigation, formal analysis, writing—original draft. S.P. Vijayachamundeeswari: resources, validation, formal analysis, supervision, resources, validation, visualization, writing—review and editing. All authors reviewed the manuscript.

Corresponding author

Correspondence to S. P. Vijayachamundeeswari.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagan, M., Vijayachamundeeswari, S.P. The significance of fillers in composite polymer electrolytes for optimizing lithium battery. Ionics 30, 647–675 (2024). https://doi.org/10.1007/s11581-023-05318-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05318-y

Keywords

Navigation