Skip to main content
Log in

4-Aminobenzoic acid as an electrolyte additive for enhancing the electrochemical properties of the sulfurized polyacrylonitrile cathode in ether electrolyte

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Sulfurized polyacrylonitrile (SPAN) is a polysulfide with high specific capacity due to its stable bonding structure. Although it is able to exhibit good electrochemical performance in ester electrolytes, its capacity in ether electrolyte decays rapidly, accompanied by shuttle effects. Herein, 4-aminobenzoic acid (4-ABA) was selected as an additive for ether electrolytes to inhibit shuttling of polysulfides. The CV curves of Li-Al cells and reconstituted cells together verified that the addition of 4-ABA had an effect on the SPAN cathode but not on the lithium anode. Further characterizations revealed that the SPAN cathode surface was protected by cathode electrolyte interphase (CEI) formed in electrolyte containing 4-ABA. Compared with the blank electrolyte, the cell with electrolyte containing 4-ABA exhibited better cycling performance, with a reversible capacity of 1178.73 mAh g−1 after 100 cycles at 0.5 C, with a capacity retention of 88.81%. These results show that the proper design of electrolyte additives is an effective way to enhance the performance of SPAN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu Z, Hao H et al (2018) Critical issues of energy efficient and new energy vehicles development in China. Energ Policy 115:92–97. https://doi.org/10.1016/j.enpol.2018.01.006

    Article  Google Scholar 

  2. Balogun M-S, Qiu W et al (2016) A review of the development of full cell lithium-ion batteries: the impact of nanostructured anode materials. Nano Res 9:2823–2851. https://doi.org/10.1007/s12274-016-1171-1

    Article  CAS  Google Scholar 

  3. Cheng XB, Zhang R et al (2017) Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev 117:10403–10473. https://doi.org/10.1021/acs.chemrev.7b00115

    Article  CAS  PubMed  Google Scholar 

  4. Sun Y, Lee HW et al (2016) In situ chemical synthesis of lithium fluoride/metal nanocomposite for high capacity prelithiation of cathodes. Nano Lett 16:1497–1501. https://doi.org/10.1021/acs.nanolett.5b05228

    Article  CAS  PubMed  Google Scholar 

  5. Hou TZ, Chen X et al (2016) Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium-sulfur batteries. Small 12:3283–3291. https://doi.org/10.1002/smll.201600809

    Article  CAS  PubMed  Google Scholar 

  6. Manthiram A, Fu Y et al (2014) Rechargeable lithium-sulfur batteries. Chem Rev 114:11751–11787. https://doi.org/10.1021/cr500062v

    Article  CAS  PubMed  Google Scholar 

  7. R. Fang, S. Zhao et al (2017) More reliable lithium-sulfur batteries: status, solutions and prospects. Adv Mater 29. https://doi.org/10.1002/adma.201606823

  8. Wang L, Zhao Y et al (2014) In situ synthesis of bipyramidal sulfur with 3D carbon nanotube framework for lithium-sulfur batteries. Adv Funct Mater 24:2248–2252. https://doi.org/10.1002/adfm.201302915

    Article  CAS  Google Scholar 

  9. Yao H, Zheng G et al (2014) Improving lithium-sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface. Nat Commun 5:3943. https://doi.org/10.1038/ncomms4943

    Article  CAS  PubMed  Google Scholar 

  10. Chen Y, Wang T et al (2021) Advances in lithium-sulfur batteries: from academic research to commercial viability. Adv Mater 33:e2003666. https://doi.org/10.1002/adma.202003666

    Article  CAS  PubMed  Google Scholar 

  11. Weret MA, Kuo C-F et al (2020) Mechanistic understanding of the sulfurized-poly(acrylonitrile) cathode for lithium-sulfur batteries. Energy Storage Mater 26:483–493. https://doi.org/10.1016/j.ensm.2019.11.022

    Article  Google Scholar 

  12. Mohammad Shamsuddin Ahmed, Suyeong Lee et al (2021) Multiscale understanding of covalently fixed sulfur-polyacrylonitrile composite as advanced cathode for metal-sulfur batteries. Adv Sci 8. https://doi.org/10.1002/advs.202101123

  13. Lei J, Huichao Lu et al (2022) Crosslinked polyacrylonitrile precursor for S@pPAN composite cathode materials for rechargeable lithium batteries. J Energy Chem 65:186–193. https://doi.org/10.1016/j.jechem.2021.05.006

    Article  CAS  Google Scholar 

  14. Wang J, Yang J et al (2002) A novel conductive polymer±sulfur composite cathode material for rechargeable lithium batteries. Adv Mater 14:963–965. https://doi.org/10.1002/adma.201402569

    Article  CAS  Google Scholar 

  15. Wang J, He YS, Yang J (2015) Sulfur-based composite cathode materials for high-energy rechargeable lithium batteries. Adv Mater 27:569–575. https://doi.org/10.1002/adma.201402569

    Article  CAS  PubMed  Google Scholar 

  16. Wang Li, He X et al (2012) Charge/discharge characteristics of sulfurized polyacrylonitrile composite with different sulfur content in carbonate based electrolyte for lithium batteries. Electrochim Acta 72:114–119. https://doi.org/10.1016/j.electacta.2012.04.005

    Article  CAS  Google Scholar 

  17. Zhao X, Wang C et al (2021) Sulfurized polyacrylonitrile for high-performance lithium sulfur batteries: advances and prospects. J Mater Chem 9:19282–19297. https://doi.org/10.1039/d1ta03300j

    Article  CAS  Google Scholar 

  18. Chen WJ, Li BQ et al (2020) Electrolyte regulation towards stable lithium-metal anodes in lithium-sulfur batteries with sulfurized polyacrylonitrile cathodes. Angew Chem Int Ed Engl 59:10732–10745. https://doi.org/10.1002/anie.201912701

    Article  CAS  PubMed  Google Scholar 

  19. Jie Li, Lin Zhang et al (2019) ZrO(NO3)2 as a functional additive to suppress the diffusion of polysulfides in lithium - sulfur batteries. J Power Sources 442. https://doi.org/10.1016/j.jpowsour.2019.227232

  20. Yang Wu, Yang W et al (2017) Pyrrole as a promising electrolyte additive to trap polysulfides for lithium-sulfur batteries. J Power Sources 348:175–182. https://doi.org/10.1016/j.jpowsour.2017.03.008

    Article  CAS  Google Scholar 

  21. Zhou J, Guo Y et al (2018) A new ether-based electrolyte for lithium sulfur batteries using a S@pPAN cathode. Chem Commun 54:5478–5481. https://doi.org/10.1039/c8cc02552e

    Article  CAS  Google Scholar 

  22. Liu H, Holoubek J et al (2020) Ultrahigh coulombic efficiency electrolyte enables Li||SPAN batteries with superior cycling performance. Mater Today 42:17–28. https://doi.org/10.1016/j.mattod.2020.09.035

    Article  CAS  Google Scholar 

  23. Chen WJ, Zhao CX et al (2020) A mixed ether electrolyte for lithium metal anode protection in working lithium sulfur batteries. Energy Environ Mater 3:160–165. https://doi.org/10.1002/eem2.12073

    Article  CAS  Google Scholar 

  24. Zhaohui Wu, Bak Seong-Min et al (2021) Understanding the roles of the electrode/electrolyte interface for enabling stable Li || sulfurized polyacrylonitrile batteries. ACS Appl Mater Interfaces 13:31733–31740. https://doi.org/10.1021/acsami.1c07903

    Article  CAS  Google Scholar 

  25. Xing X, Li Y et al (2019) Cathode electrolyte interface enabling stable Li-S batteries. Energy Storage Mater 21:474–480. https://doi.org/10.1016/j.ensm.2019.06.022

    Article  Google Scholar 

  26. Zhang W, Wu Q et al (2021) An organodiselenide containing electrolyte enables sulfurized polyacrylonitrile cathodes with fast redox kinetics in Li-S batteries. Chem Commun 57:9688–9691. https://doi.org/10.1039/d1cc03417k

    Article  CAS  Google Scholar 

  27. Lei J, Chen J et al (2020) High molecular weight polyacrylonitrile precursor for S@pPAN composite cathode materials with high specific capacity for rechargeable lithium batteries. ACS Appl Mater Interfaces 12:33702–33709. https://doi.org/10.1021/acsami.0c07658

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Y, Zhao Y et al (2014) Preparation of novel network nanostructured sulfur composite cathode with enhanced stable cycle performance. J Power Sour 270:326–331. https://doi.org/10.1016/j.jpowsour.2014.07.096

    Article  CAS  Google Scholar 

  29. Jin Z-Q, Liu Y-G et al (2018) A new insight into the lithium storage mechanism of sulfurized polyacrylonitrile with no soluble intermediates. Energy Storage Mater 14:272–278. https://doi.org/10.1016/j.ensm.2018.04.013

    Article  Google Scholar 

  30. Li J, Harlow J et al (2018) Dependence of cell failure on cut-off voltage ranges and observation of kinetic hindrance in LiNi0.8Co0.15Al0.05O2. J Electrochem Soc 165:A2682–A2695. https://doi.org/10.1149/2.0491811jes

    Article  CAS  Google Scholar 

  31. Fink K, Gasper P et al (2020) Impacts of solvent washing on the electrochemical remediation of commercial end-of-life cathodes. ACS Appl Energy Mater 3:12212–12229. https://doi.org/10.1021/acsaem.0c02260

    Article  CAS  Google Scholar 

  32. Yang H, Hong-Hui Wu et al (2019) Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries. Adv Funct Mater 29:13. https://doi.org/10.1002/adfm.201808825

    Article  CAS  Google Scholar 

  33. Chen J, Zhang H et al (2016) Improving the electrochemical performance of high voltage spinel cathode at elevated temperature by a novel electrolyte additive. J Power Sour 303:41–48. https://doi.org/10.1016/j.jpowsour.2015.10.088

    Article  CAS  Google Scholar 

  34. Shen Z, Zhang W et al (2021) Tailored electrolytes enabling practical lithium-sulfur full batteries via interfacial protection. ACS Energy Lett 6:2673–2681. https://doi.org/10.1021/acsenergylett.1c01091

    Article  CAS  Google Scholar 

  35. Frey M, Zenn RK et al (2017) Easily accessible, textile fiber-based sulfurized poly(acrylonitrile) as Li/S cathode material: correlating electrochemical performance with morphology and structure. ACS Energy Lett 2:595–604. https://doi.org/10.1021/acsenergylett.7b00009

    Article  CAS  Google Scholar 

  36. Zhixin Xu, Yang J et al (2019) Bicomponent electrolyte additive excelling fluoroethylene carbonate for high performance Si-based anodes and lithiated Si-S batteries. Energy Storage Mater 20:388–394. https://doi.org/10.1016/j.ensm.2018.11.001

    Article  Google Scholar 

  37. Ye Hu, Bing Li et al (2018) Stable cycling of phosphorus anode for sodium-ion batteries through chemical bonding with sulfurized polyacrylonitrile. Adv Funct Mater 28. https://doi.org/10.1002/adfm.201801010

  38. Jiahao Gu, Chenyang Shi et al (2022) Lithiated 3, 6-dioxa-1, 8-octane dithiol as redox mediator to manipulate polysulfides conversion for high-performance lithium-sulfur batteries. Chem Eng J 432. https://doi.org/10.1016/j.cej.2021.134379

  39. Xueya Zhang, Jie Li et al (2021) Promoting the conversion of Li2S by functional additives phenyl diselenide in lithium–sulfur batteries. J Power Sour 482. https://doi.org/10.1016/j.jpowsour.2020.228967

  40. Hualin Ye, Jianguo Sun et al (2021) Enhanced polysulfide conversion catalysis in lithium-sulfur batteries with surface cleaning electrolyte additives. Chemical Engineering Journal 410. https://doi.org/10.1016/j.cej.2020.128284

Download references

Funding

The authors gratefully acknowledge the supports from the Venture & Innovation Support Program for Chongqing Overseas Returnees (cx2019128) and Open project of Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission (Chongqing Technology and Business University, KFJJ2022012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuebu Hu.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Zou, F., Yang, H. et al. 4-Aminobenzoic acid as an electrolyte additive for enhancing the electrochemical properties of the sulfurized polyacrylonitrile cathode in ether electrolyte. Ionics 29, 3663–3671 (2023). https://doi.org/10.1007/s11581-023-05118-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05118-4

Keywords

Navigation