Skip to main content

Advertisement

Log in

Inhibition of lithium dendrite growth in composite separator for semi-solid-state lithium metal batteries

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The composite separator PP-CPE was created by coating the polypropylene (PP) separator with the composite polymer electrolyte (CPE), which is made up of Li6.4La3Zr1.4Ta0.6O12 (LLZTO) and polyvinylidene fluoride hexafluoropropylene (PVDF-HFP). To compensate for the inequalities in Li+ flux movement caused by the conventional PP separator, this new separator features several rapid Li+ channels along on the PVDF-HFP, LLZTO, and PVDF-HFP/LLZTO interfaces. To ensure that lithium ions are uniformly deposited on the anode, CPE layers can be utilized to immobilize anions and control their movement. The Cu/Li battery with modified separator PP-CPE circulates 300 times at 1 mA cm2, and the Coulombic efficiency is more than 98.1%. The Li symmetrical battery can cycle stably for more than 600 h and maintain a stable overpotential. The capacity of the LFP/Li battery loaded with 10 mg cm2 decreased to 126 mAh g1 when 300 cycles were performed at 1C, and the Coulombic efficiency over 99.3%. This effective and simple separator modification strategy can reduce the formation and growth of lithium dendrites, which leads to higher coulombic efficiency and better cycle stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The findings of this study are supported by data which can be made available by the corresponding author upon a reasonable institutional request.

References

  1. Pan Q, Barbash D, Smith DM, Qi H, Gleeson SE, Li CY (2017) Correlating electrode-electrolyte interface and battery performance in hybrid solid polymer electrolyte-based lithium metal batteries. Adv Energy Mater 7:1701231

    Article  Google Scholar 

  2. Schmuch R, Wagner R, Hörpel G, Placke T, Winter M (2018) Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat Energy 4:267–278

    Article  Google Scholar 

  3. Cheng F, Liang J, Tao Z, Chen J (2011) Functional materials for rechargeable batteries. Adv Mater 23:1695

    Article  CAS  PubMed  Google Scholar 

  4. Zuo TT, Wu XW, Yang CP, Yin YX, Ye H, Li NW, Guo YG (2017) Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes. Adv Mater 29:1700389

    Article  Google Scholar 

  5. Lu Q, He YB, Yu Q, Li B, Kaneti YV, Yao Y, Kang F, Yang QH (2017) Dendrite-free, high-rate, long-life lithium metal batteries with a 3d cross-linked network polymer electrolyte. Adv Mate 29:1604460

    Article  Google Scholar 

  6. Zhu M, Wu J, Zhong WH, Lan J, Sui G, Yang XP (2018) A biobased composite gel polymer electrolyte with functions of Lithium dendrites suppressing and manganese ions trapping. Adv Energy Mater 8:1702561

    Article  Google Scholar 

  7. Li M, Li H, Lan JL, Yu Y, Du Z, Yang X (2018) Integrative preparation of mesoporous epoxy resin–ceramic composite electrolytes with multilayer structure for dendrite-free lithium metal batteries. J Mater Chem 6:19094–19106

    Article  CAS  Google Scholar 

  8. Shen Y, Zhang Y, Han S, Wang J, Peng Z, Chen L (2018) Unlocking the energy capabilities of lithium metal electrode with solid-state electrolytes. Joule 2:1674–1689

    Article  CAS  Google Scholar 

  9. Zhao CZ, Zhang X, Cheng XB, Zhang R, Xu R, Chen PY, Peng HJ, Huang JQ, Zhang Q (2017) An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc Nat Academy Sci 114(42):11069–11074

    Article  CAS  Google Scholar 

  10. Zheng F, Kotobuki M, Song S, Lai MO, Lu L (2018) Review on solid electrolytes for all-solid-state lithium-ion batteries. J Power Sources 389:198–213

    Article  CAS  Google Scholar 

  11. Zhang X, Cheng X, Zhang Q (2018) Advances in interfaces between Li metal anode and electrolyte. Adv Mater Interfaces 5:1701097

    Article  Google Scholar 

  12. Yao X, Liu D, Wang C, Long P, Peng G, Hu YS (2016) High energy all-solid-state lithium batteries with ultra-long cycle life. Nano Letters 16:7148–7154

    Article  CAS  PubMed  Google Scholar 

  13. Tikekar MD, Choudhury S, Tu Z, Archer LA (2016) Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat Energy 19:16114

    Article  Google Scholar 

  14. Li H, Li M, Siyal SH, Zhu M, Lan JL, Sui G, Yu Y, Zhong W, Yang X (2018) A sandwich structure polymer/polymer-ceramics/polymer gel electrolytes for the safe, stable cycling of lithium metal batteries. J Membr Sci 555:169–176

    Article  CAS  Google Scholar 

  15. Lagadec MF, Zahn R, Wood V (2019) Characterization and performance evaluation of lithium-ion battery separators. Nat Energy 4:16–25

    Article  CAS  Google Scholar 

  16. Prosini PP, Villano P, Carewska M (2002) A novel intrinsically porous separator for self-standing lithium-ion batteries. Electrochim Acta 48:227–233

    Article  CAS  Google Scholar 

  17. Zhang SS, Xu K, Jow TR (2003) Alkaline composite film as a separator for rechargeable lithium batteries. J Solid State Electrochem 7:492–496

    Article  CAS  Google Scholar 

  18. Li X, Tao J, Hu D, Engelhard MH, Zhao W, Zhang JG, Xu W (2018) Stability of polymeric separators in lithium metal batteries in a low voltage environment. J Mater Chem A 6(12):5006–5015

    Article  CAS  Google Scholar 

  19. Yu BC, Park K, Jang JH, Goodenough JB (2016) Cellulose-based porous membrane for suppressing Li dendrite formation in lithium–sulfur battery. ACS Energy Lett 1:633–637

    Article  CAS  Google Scholar 

  20. Chang CH, Chung SH, Manthiram A (2017) Dendrite-free lithium anode via a homogenous Li-ion distribution enabled by a Kimwipe paper. Advanced Sustain Syst 1:1600034

    Article  Google Scholar 

  21. Ryou MH, Lee DJ, Lee JN, Lee YM, Park JK, Choi JW (2012) Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators. Adv Energy Mater 2:645–650

    Article  CAS  Google Scholar 

  22. Zhang SS, Fan X, Wang C (2018) Preventing lithium dendrite-related electrical shorting in rechargeable batteries by coating separator with a Li-killing additive. J Mater Chem A 6(23):10755–10760

    Article  CAS  Google Scholar 

  23. Lopez J, Pei A, Oh JY, Wang GJN, Cui Y, Bao Z (2018) Effects of polymer coatings on electrodeposited lithium metal. J Am Chem Soc 140(37):11735–11744

    Article  CAS  PubMed  Google Scholar 

  24. He M, Cui Z, Chen C, Li Y, Guo X (2018) Formation of self-limited, stable and conductive interfaces between garnet electrolytes and lithium anodes for reversible lithium cycling in solid-state batteries. J Mater Chem A 6(24):11463–11470

    Article  CAS  Google Scholar 

  25. Du F, Zhao N, Li Y, Chen C, Liu Z, Guo XJ (2015) All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes. J Power Sources 300:24–28

    Article  CAS  Google Scholar 

  26. Yang S, Gu J, Yin Y (2018) A biaxial stretched β-isotactic polypropylene microporous membrane for lithium-ion batteries. J Appl Polym Sci 135:45825

    Article  Google Scholar 

  27. Elashmawi IS, Gaabour LH (2015) Raman, morphology and electrical behavior of nanocompositesbased on PEO/PVDF with multi-walled carbon nanotubes. Results in Phys 5:105–110

    Article  Google Scholar 

  28. Waqas M, Ali S, Lv WQ, Chen D, Boateng B, He W (2019) High-performance PE-BN/PVDF-HFP bilayer separator for lithium-ion batteries. Adv Mater Interfaces 6(1):1801330

    Article  Google Scholar 

  29. Waqas M, Tan C, Lv WQ, Ali S, Boateng B, Chen W, Wei Z, Feng C, Ahmed J, Goodenough JB, He W (2018) A highly-efficient composite separator with strong ligand interaction for high-temperature lithium-ion batteries. ChemElectroChem 5(19):2722–2728

    Article  CAS  Google Scholar 

  30. Ren Y, Deng H, Chen R, Shen Y, Lin YH, Nan CW (2015) Effects of Li source on microstructure and ionic conductivity of Al-contained Li6.75La3Zr1.75Ta0.25O12ceramics. J Eur Ceram Soc 35(2):561–572

    Article  CAS  Google Scholar 

  31. Kise H, Ogata H (1983) Phase transfer catalysis in dehydrofluorination of poly(vinylidene fluoride) by aqueous sodium hydroxide solutions. J Polym Sci Polym Chem 21:3443–3451

    Article  CAS  Google Scholar 

  32. Hang X, Liu T, Zhang S, Huang X, Xu BQ, Lin YH, Xu B, Li LL, Nan CW, Shen Y (2017) Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J Am Chem Soc 139:13779–13785

    Article  Google Scholar 

  33. Gao X, Sun Q, Yang X, Liang J, Koo A, Li W, Liang J, Wang J, Li R, Holness FB, Price AD, Yang S, Sham TK, Sun X (2019) Toward a remarkable Li-S battery via 3D printing. Nano Energy 56:595–603

    Article  CAS  Google Scholar 

  34. Huo HY, Wu B, Zhang T, Zheng XS, Ge L, Xu TW, Guo XX, Sun XL (2019) Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries. Energy Stor Mater 18:59–67

    Google Scholar 

  35. Huo H, Chen Y, Luo J, Yang X, Guo X, Sun X (2019) Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries. Adv Energy Mater 9(17):1804004

    Article  Google Scholar 

  36. Huo H, Zhao N, Sun J, Du F, Li Y, Guo X (2017) Composite electrolytes of polyethylene oxides/garnets interfacially wetted by ionic liquid for room-temperature solid-state lithium battery. J Power Sources 372:1–7

    Article  CAS  Google Scholar 

  37. Li C, Liu S, Shi C, Liang G, Lu Z, Fu R, Wu D (2019) Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes. Nat Commun 10(1):1363

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang T, Imanishi N, Hasegawa S, Hirano A, Xie J, Takeda Y, Yamamoto O, Sammes N (2008) Li∕polymer electrolyte∕water stable lithium-conducting glass ceramics composite for lithium–air secondary batteries with an aqueous electrolyte. J Electrochem Soc 155:A965

    Article  CAS  Google Scholar 

Download references

Funding

Authors would like to thank Engineering Research Centre of High-Performance Polymer, Qingdao University of Science and Technology for financial support.

Author information

Authors and Affiliations

Authors

Contributions

YCG: investigation, validation, formal analysis, and writing—original draft. HQL: electrochemical characterization testing participation, helped with solid polymer electrolytes preparation, conceptualization, supervision, writing—review and editing, and funding acquisition. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yuanchun Gu.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Liu, H. Inhibition of lithium dendrite growth in composite separator for semi-solid-state lithium metal batteries. Ionics 29, 3067–3076 (2023). https://doi.org/10.1007/s11581-023-05044-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05044-5

Keywords

Navigation