Skip to main content

Advertisement

Log in

Poly(quinone-1,4-diaminoanthraquinone) cathodes for stable Zn2+ storage in aqueous zinc-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Organic cathode materials have attracted much attention owing to their sustainability and structure designability. However, the structural design of high electrochemical-performance organic cathode in aqueous zinc-ion batteries (AZIBs) still needs further development. Herein, we propose poly(quinone-1,4-diaminoanthraquinone) (PQN14) as the cathode to stabilize Zn2+ storage based on the configuration suitability of chelating C = O units and N atoms along large conjugated chains. PQN14 exhibits a specific discharge capacity of 158 mAh g−1 at 0.02 A g−1 and has a 75% capacity retention after 400 cycles. Even at 0.1 A g−1, it exhibits a 72% capacity retention after 1000 cycles. Redox kinetics analysis indicates that PQN14 exhibits efficient capacitive and ion diffusion controlled behaviors. The Zn2+ storage mechanism of PQN14 is investigated via ex-situ X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy, which indicates that the moderate active site configuration in PQN14 is conducive to coordination with Zn2+. The active site configuration involves all carbonyl groups and N atoms to realize stable Zn2+ insertion. This approach, which tunes the configuration to afford high electrochemical performance, may provide a progressive perspective for developing organic cathode materials for AZIBs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data included in this study are available on request.

References

  1. Song J, Xu K, Liu N, Reed D, Li X (2021) Crossroads in the renaissance of rechargeable aqueous zinc batteries. Mater Today 45:191–212. https://doi.org/10.1016/j.mattod.2020.12.003

    Article  CAS  Google Scholar 

  2. Hu EY, Yang XQ (2018) Rejuvenating zinc batteries. Nat Mater 17:478–483. https://doi.org/10.1038/s41563-018-0090-9

    Article  CAS  Google Scholar 

  3. Wang QY, Liu B, Shen YH, Wu JK, Zhao ZQ, Zhong C, Hu WB (2021) Confronting the challenges in lithium anodes for lithium metal batteries. Adv Sci News 8:2101111. https://doi.org/10.1002/advs.202101111

    Article  CAS  Google Scholar 

  4. Li FL, Si YB, Liu BJ, Li ZJ, Fu YZ (2019) Lithium benzenedithiolate catholytes for rechargeable lithium batteries. Adv Funct Mater 29:1902223. https://doi.org/10.1002/adfm.201902223

    Article  CAS  Google Scholar 

  5. You CL, Wu XW, Yuan XH, Chen YH, Liu LL, Zhu YS, Fu LJ, Wu YP, Guo YG, Ree TV (2020) Advances in rechargeable Mg batteries. J Mater Chem A 8:25601–25625. https://doi.org/10.1039/D0TA09330K

    Article  CAS  Google Scholar 

  6. Torres A, Casals JL, Dompablo M (2021) Enlisting potential cathode materials for rechargeable Ca batteries. Chem Mater 33:2488–2497. https://doi.org/10.1021/acs.chemmater.0c04741

    Article  CAS  Google Scholar 

  7. Wang H, Wang PP, Ji ZY, Chen Z, Wang JQ, Ling W, Liu J, Hu MM, Zhi CY, Huang Y (2021) Rechargeable quasi-solid-state aqueous hybrid Al3+/H+ battery with 10,000 ultralong cycle stability and smart switching capability. Nano Res 14:4154–4162. https://doi.org/10.1007/s12274-021-3356-5

    Article  CAS  Google Scholar 

  8. Xia MT, Zhang XK, Yu HX, Yang ZW, Chen S, Zhang LY, Shui M, Xie Y, Shu J (2021) Hydrogen bond chemistry in Fe4[Fe(CN)6]3 host for aqueous NH4+ batteries. Chem Eng J 421:127759. https://doi.org/10.1016/j.cej.2020.127759

    Article  CAS  Google Scholar 

  9. Yin J, Wang YZ, Zhu YP, Jin JJ, Chen CL, Yuan YY, Bayhan Z, Salahd N, Alhebshie N, Zhang WL, Ogla US, Alshareef HN (2022) Regulating the redox reversibility of zinc anode toward stable aqueous zinc batteries. Nano Energy 99:107331. https://doi.org/10.1016/j.nanoen.2022.107331

    Article  CAS  Google Scholar 

  10. Liu YX, Li LP, Ji X, Cheng S (2022) Scientific challenges and improvement strategies of Zn-based anodes for aqueous Zn-ion batteries. Chem Rec 22:e202200114. https://doi.org/10.1002/tcr.202200114

    Article  CAS  PubMed  Google Scholar 

  11. Cao LS, Li D, Deng T, Li Q, Wang CS (2020) Hydrophobic organic-electrolyte-protected zinc anodes for aqueous zinc batteries. Angew Chem Int Ed 59:19292–19296. https://doi.org/10.1002/anie.202008634

    Article  CAS  Google Scholar 

  12. Ruan PC, Liang SQ, Lu BG, Fan HJ, Zhou J (2022) Design strategies for high-energy-density aqueous zinc batteries. Angew Chem Int Ed 61:e202200598. https://doi.org/10.1002/anie.202200598

    Article  CAS  Google Scholar 

  13. Zhang Y, Ang EH, Dinh KN, Rui K, Lin HJ, Zhu JX, Yan QY (2021) Recent advances in vanadium-based cathode materials for rechargeable zinc ion batteries. Mater Chem Front 5:744–762. https://doi.org/10.1039/D0QM00577K

    Article  CAS  Google Scholar 

  14. Gong W, Fugetsu BS, Mao W, Vipin AK, Sakata I, Su L, Zhang XJ, Endo M (2022) Electrochemistry of rechargeable aqueous zinc/zinc-sulphate/manganese-oxide batteries and methods for preparation of high-performance cathodes. J Mater Chem A 10:15415–15426. https://doi.org/10.1039/D2TA03729G

    Article  CAS  Google Scholar 

  15. Li YX, Zhao JX, Hu Q, Hao TW, Cao H, Huang XM, Liu Y, Zhang YY, Lin DM, Tang YX, Cai YQ (2022) Prussian blue analogs cathodes for aqueous zinc ion batteries. Mater Today Energy 29:101095. https://doi.org/10.1016/j.mtener.2022.101095

    Article  CAS  Google Scholar 

  16. Cui J, Guo ZW, Yi J, Liu XY, Wu K, Liang PC, Li Q, Liu YY, Wang YG, Xia YY, Zhang JJ (2020) Organic cathode materials for rechargeable zinc batteries: mechanisms, challenges, and perspectives. Chemsuschem 13:2160–2185. https://doi.org/10.1002/cssc.201903265

    Article  CAS  PubMed  Google Scholar 

  17. Han CP, Li HF, Shi RY, Zhang TF, Tong J, Li JQ, Li BH (2019) Organic quinones towards advanced electrochemical energy storage: recent advances and challenges. J Mater Chem A 7:23378–23415. https://doi.org/10.1039/C9TA05252F

    Article  CAS  Google Scholar 

  18. Zhao Q, Huang WW, Luo ZQ, Liu LJ, Lu Y, Li YX, Li L, Hu JY, Ma H, Chen J (2018) High-capacity aqueous zinc batteries using sustainable quinone electrodes. Sci Adv 4:eaao1761. https://doi.org/10.1126/sciadv.aao1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gao YJ, Li JF, Wang F, Chu J, Yu P, Wang BS, Zhan H, Song ZP (2021) A high-performance aqueous rechargeable zinc battery based on organic cathode integrating quinone and pyrazine. Energy Storage Mater 40:31–40. https://doi.org/10.1016/j.ensm.2021.05.002

    Article  Google Scholar 

  20. Jia XX, Liu CF, Neale ZG, Yang JH, Cao GZ (2020) Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem Rev 120:7795–7866. https://doi.org/10.1021/acs.chemrev.9b00628

    Article  CAS  PubMed  Google Scholar 

  21. Xie J, Yu F, Zhao JW, Guo W, Zhang HL, Cui GL, Zhang QC (2020) An irreversible electrolyte anion-doping strategy toward a superior aqueous Zn-organic battery. Energy Storage Mater 33:283–289. https://doi.org/10.1016/j.ensm.2020.08.027

    Article  Google Scholar 

  22. Zhao Y, Wang Y, Zhao Z, Zhao JW, Xin T, Wang N, Liu JZ (2020) Achieving high capacity and long life of aqueous rechargeable zinc battery by using nanoporous-carbon-supported poly(1,5-naphthalenediamine) nanorods as cathode. Energy Storage Mater 28:64–72. https://doi.org/10.1016/j.ensm.2020.03.001

    Article  Google Scholar 

  23. Ding YY, Ren X, Chen D, Wen FJ, Li YT, Xu F (2022) Poly(1,5-Diaminoanthraquinone) as a high-capacity bipolar cathode for rechargeable magnesium batteries. ACS Appl Energy Mater 5:3004–3012. https://doi.org/10.1021/acsaem.1c03652

    Article  CAS  Google Scholar 

  24. Guo CX, Liu Y, Wang LQ, Kong DJ, Wang JM (2022) Poly(quinone-thiourea) with improved auxiliary coordination Zn2+ insertion/extraction positive performance for aqueous zinc-ion battery cathodes. ACS Sustain Chem Eng 10:213–223. https://doi.org/10.1021/acssuschemeng.1c05881

    Article  CAS  Google Scholar 

  25. Wan F, Zhou XZ, Lu Y, Niu ZQ, Chen Z (2020) Energy storage chemistry in aqueous zinc metal batteries. ACS Energy Lett 5:3569–3590. https://doi.org/10.1021/acsenergylett.0c02028

    Article  CAS  Google Scholar 

  26. Jing Y, Liang YL, Gheytani S, Yao Y (2017) Cross-conjugated oligomeric quinones for high performance organic batteries. Nano Energy 37:46–52. https://doi.org/10.1016/j.nanoen.2017.04.055

    Article  CAS  Google Scholar 

  27. Wang Q, Liu Y, Chen P (2020) Phenazine-based organic cathode for aqueous zinc secondary batteries. J Power Sources 468:228401. https://doi.org/10.1016/j.jpowsour.2020.228401

    Article  CAS  Google Scholar 

  28. Song ZY, Zhu DZ, Li LC, Chen T, Duan H, Wang ZW, Lv YK, Xiong W, Liu MX, Gan LH (2019) Ultrahigh energy density of a N, O eodoped carbon nanosphere based all-solid-state symmetric supercapacitor. J Mater Chem A 7:1177–1186. https://doi.org/10.1039/C8TA10158B

    Article  CAS  Google Scholar 

  29. Asha A, Mohan AS, Suma S, Sudarsanakumar M, Kurup M (2017) Facile synthesis and spectral eharacterization of 2,5-bis (cyclohexylamino)-1,4-benzoquinone polymorphs from methyl and ethyl protocatechuic aldehydes. J Mol Struct 1141:299–308. https://doi.org/10.1016/j.molstruc.2017.03.106

    Article  CAS  Google Scholar 

  30. Zaher NH, Rashed ER, El-Ghazaly M (2017) Semi-synthetic thymoquinone analogs: new prototypes as potential antihyperlipi-demics in irradiated rats. Future Med Chem 9:1483–1493. https://doi.org/10.4155/fmc-2017-0054

    Article  CAS  PubMed  Google Scholar 

  31. Wu WL, Shi HY, Lin ZR, Yang XP, Li CC, Lin L, Song Y, Guo D, Liu XX, Sun XQ (2021) The controlled quinone introduction and conformation modification of polyaniline cathode materials for rechargeable aqueous zinc-polymer batteries. Chem Eng J 419:129659. https://doi.org/10.1016/j.cej.2021.129659

    Article  CAS  Google Scholar 

  32. Yue XJ, Liu HH, Liu P (2019) Polymer grafted on carbon nanotubes as a flexible cathode for aqueous zinc-ion batteries. Chem Commun 55:1647–1650. https://doi.org/10.1039/C8CC10060H

    Article  CAS  Google Scholar 

  33. Jiang B, Huang T, Yang P, Xi X, Su YZ, Liu RL, Wu DQ (2021) Solution-processed perylene diimide-ethylene diamine cathodes for aqueous zinc-ion batteries. J Colloid Interface Sci 598:36–44. https://doi.org/10.1016/j.jcis.2021.04.018

    Article  CAS  PubMed  Google Scholar 

  34. Zhang XT, Li JX, Ao HS, Liu DY, Shi L, Wang CM, Zhu YC, Qian YT (2020) Appropriately Hydrophilic/hydrophobic cathode enables high-performance aqueous zinc-ion batteries. Energy Storage Mater 30:337–345. https://doi.org/10.1016/j.ensm.2020.05.021

    Article  Google Scholar 

  35. Wu JB, Xu W, Lin Y, Shi X, Yang F, Lu XH (2021) Tuning electronic structure endows 1,4-naphthoquinones with significantly boosted Zn-ion storage capability and output voltage. J Power Sources 483:229114. https://doi.org/10.1016/j.jpowsour.2020.229114

    Article  CAS  Google Scholar 

  36. Yang QF, Cui MN, Hu JL, Chu FL, Zheng YJ, Liu JJ, Li CL (2020) Ultrathin defective C-N coating to enable nanostructured Li plating for Li metal batteries. ACS Nano 14:1866–1878. https://doi.org/10.1021/acsnano.9b08008

    Article  CAS  PubMed  Google Scholar 

  37. Zhang S, Zhao W, Li H, Xu Q (2020) Cross-conjugated polycatechol organic cathode for aqueous zinc-ion storage. Chemsuschem 13:188–195. https://doi.org/10.1002/cssc.201902697

    Article  CAS  PubMed  Google Scholar 

  38. Luo P, Zhang WW, Wang SY, Liu GY, Xiao Y, Zuo CL, Tang W, Fu XD, Dong SJ (2021) Electroactivation-induced hydrated zinc vanadate as cathode for high-performance aqueous zinc-ion batteries. J Alloys Compd 884:161147. https://doi.org/10.1016/j.jallcom.2021.161147

    Article  CAS  Google Scholar 

  39. Sun GC, Yang BZ, Chen XJ, Wei YH, Yin G, Zhang HP, Liu Q (2022) Aqueous zinc batteries using N-containing organic cathodes with Zn2+ and H+ co-uptake. Chem Eng J 431:134253. https://doi.org/10.1016/j.cej.2021.134253

    Article  CAS  Google Scholar 

  40. Huang CM, Liu SH, Feng JJ, Wang Y, Fan QH, Kuang Q, Dong YZ, Zhao YM (2021) Optimizing engineering of chargeable aqueous zinc ion batteries to enhance the zinc ions storage properties of cathode material. J Power Sources 490:229528. https://doi.org/10.1016/j.jpowsour.2021.229528

    Article  CAS  Google Scholar 

  41. Liang PH, Xu TF, Zhu KJ, Rao Y, Zheng HJ, Wu M, Chen JT, Liu JS, Yan K, Wang J, Zhang RF (2022) Heterogeneous interface-boosted zinc storage of H2V3O8 nanowire/Ti3C2Tx Mxene composite toward high-rate and long cycle lifespan aqueous zinc-ion batteries. Energy Storage Mater 50:63–74. https://doi.org/10.1016/j.ensm.2022.05.010

    Article  Google Scholar 

  42. Liu N, Li B, He ZX, Dai L, Wang HY, Wang L (2021) Recent advances and perspectives on vanadium- and manganese-based cathode materials for aqueous zinc ion batteries. J Energy Chem 59:134–159. https://doi.org/10.1016/j.jechem.2020.10.044

    Article  CAS  Google Scholar 

  43. Wang XJ, Wang G, He XM (2023) Anthraquinone porous polymers with different linking patterns for high performance zinc-organic battery. J Colloid Interface Sci 629:434–444. https://doi.org/10.1016/j.jcis.2022.08.166

    Article  CAS  PubMed  Google Scholar 

  44. Cheng YH, Zhang NY, Wang QL, Guo YJ, Tao S, Liao ZJ, Jiang P, Xiang ZH (2019) A long-life hybrid zinc flow battery achieved by dual redox couples at cathode. Nano Energy 63:103822. https://doi.org/10.1016/j.nanoen.2019.06.018

    Article  CAS  Google Scholar 

  45. Zuo Y, Wang K, Pei P, Wei M, Liu X, Xiao Y, Zhang P (2021) Zinc dendrite growth and inhibition strategies. Mater Today Energy 20:100. https://doi.org/10.1016/j.mtener.2021.100692

    Article  CAS  Google Scholar 

  46. Ma KX, Li Q, Hong C, Yang GZ, Wang CX (2021) Bi doping-enhanced reversible-phase transition of α-MnO2 raising the cycle capability of aqueous Zn-Mn batteries. ACS Appl Mater Interfaces 13:55208–55217. https://doi.org/10.1021/acsami.1c17677

    Article  CAS  PubMed  Google Scholar 

  47. Huang XM, Li ZW, Liu H, Zhang MY, Du XN, Cui XX, Wang QB, Wang H (2022) Optimized cyclic and electrochemical performance by organic ion N(CH3)4+ pre-inserted into N(CH3)4V8O20 cathode and hierarchy distributive Zn anode in aqueous zinc ion batteries. Electrochim Acta 412:140160. https://doi.org/10.1016/j.electacta.2022.140160

    Article  CAS  Google Scholar 

  48. Wang YR, Wang CX, Ni ZG, Gu YM, Wang BL, Guo ZW, Wang Z, Bin D, Ma J, Wang YG (2020) Binding zinc Ions by carboxyl groups from adjacent molecules toward long-life aqueous zinc-organic batteries. Adv Mater 32:2000338. https://doi.org/10.1002/adma.202000338

    Article  CAS  Google Scholar 

  49. Xu DX, Cao ZY, Ye ZL, Zhang H, Wang LP, John M, Dong P, Gao SP, Shen JF, Ye MX (2021) Electrochemical oxidation of π-π coupling organic cathode for enhanced zinc ion storage. Chem Eng J 417:129245. https://doi.org/10.1016/j.cej.2021.129245

    Article  CAS  Google Scholar 

  50. Li D, Wang C, Hu JH, Tang W, Jia S, Guo MC, Fan C (2022) Phenanthraquinone-based polymer organic cathodes for highly efficient Na-ion batteries. Chem Eng J 449:137745. https://doi.org/10.1016/j.cej.2022.137745

    Article  CAS  Google Scholar 

  51. Kundu D, Oberholzer P, Glaros C, Bouzid A, Tervoort E, Pasquarello A, Niederberger M (2018) Organic cathode for aqueous Zn-ion batteries: taming a unique phase evolution toward stable electrochemical cycling. Chem Mater 30:3874–3881. https://doi.org/10.1021/acs.chemmater.8b01317

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Hebei Natural Science Foundation (No. B2019203500), Cultivation Project for Basic Research and Innovation of Yanshan University (2021LGQN031) and Subsidy for Hebei Key Laboratory of Applied Chemistry after Operation Performance (22567616H) for providing the financial support for this project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Liu or Liqiu Wang.

Ethics declarations

Competing interest

The authors declare no competing financial interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6477 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, C., Liu, Y., Zhang, J. et al. Poly(quinone-1,4-diaminoanthraquinone) cathodes for stable Zn2+ storage in aqueous zinc-ion batteries. Ionics 29, 2319–2328 (2023). https://doi.org/10.1007/s11581-023-04980-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-04980-6

Keywords

Navigation