Skip to main content

Advertisement

Log in

Review on interfacial compatibility of solid-state lithium batteries

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Solid-state lithium batteries (SSLBs) are one of the most promising next-generation energy storage devices. Firstly, with the purpose of improving the stability of the passivation film on the electrode surface, this paper focuses on the effective methods to improve the overall performance of batteries. Secondly, the compatibility between different electrolytes and electrodes is analyzed, aiming to select an electrolyte suitable for promoting ion flow while improving the permeability of electrolytes and electrodes as well as the SEI film by inhibiting lithium dendrites. The basic content of this paper is shown in Fig. 1, in which the interfacial compatibility of SSLBs is determined by positive and negative electrodes, electrolyte, and SEI film, like a hamburger threaded on a bamboo stick. This paper also reviews major methods currently used to prepare SEI films. It can be concluded that Li dendrites are one of the most significant factors affecting the interfacial compatibility of SSLBs. To achieve good interfacial compatibility of SSLBs, it is necessary to increasingly serious lithium dendrites and to propose as many use schemes as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Yan Y, Kong Q-R, Sun C-C, Yuan J-J, Huang Z, Fang L-F, Zhu B-K, Song Y-Z (2020) Copolymer-assisted polypropylene separator for fast and uniform lithium ion transport in lithium-ion batteries. Chin J Polym Sci 38(12):1313–1324

    Article  CAS  Google Scholar 

  2. Qu W, Yan M, Luo R, Qian J, Wen Z, Chen N, Li L, Wu F, Chen R (2021) A novel nanocomposite electrolyte with ultrastable interface boosts long life solid-state lithium metal batteries. J Power Sources 484:229195

    Article  CAS  Google Scholar 

  3. He H, Chai Y, Zhang X, Shi P, Fan J, Xu Q, Min Y (2021) A 2D–3D co-conduction effect in PEO-based all-solid-state batteries for long term cycle stability. Journal of Materials Chemistry A 9(14):9214–9227

    Article  CAS  Google Scholar 

  4. Wang C, Sun X, Yang L, Song D, Wu Y, Ohsaka T, Matsumoto F, Wu J (2020) In situ ion-conducting protective layer strategy to stable lithium metal anode for all-solid-state sulfide-based lithium metal batteries. Adv Mater Interf 8(1):2001698

    Article  Google Scholar 

  5. Lüke D, Oetken M (2022) Lithium-sulfur batteries – a promising and challenging energy storage device for the future of electromobility. Chemkon 29:234

    Article  Google Scholar 

  6. Madani SS, Schaltz E, Kær SK (2021) Thermal characterizations of a lithium titanate oxide-based lithium-ion battery focused on random and periodic charge-discharge pulses. Appl Syst Innov 4(2):24

    Article  Google Scholar 

  7. Delluva AA, Dudoff J, Teeter G, Holewinski A (2020) Cathode interface compatibility of amorphous LiMn2O4 (LMO) and Li7La3Zr2O12 (LLZO) characterized with thin-film solid-state electrochemical cells. ACS Appl Mater Interf 12(22):24992–24999

    Article  CAS  Google Scholar 

  8. Zhao H, Deng N, Kang W, Li Z, Wang G, Cheng B (2020) Highly multiscale structural Poly(vinylidene fluoridehexafluoropropylene) / poly-m-phenyleneisophthalamide separator with enhanced interface compatibility and uniform lithium-ion flux distribution for dendrite-proof lithium-metal batteries. Energy Storage Mater 26:334–348

    Article  Google Scholar 

  9. Wang S, Li S, Wei B, Lu X (2020) Interfacial engineering at Cathode/LATP interface for high-performance solid-state batteries. J Electrochem Soc 167(10):100528

    Article  CAS  Google Scholar 

  10. Chen D, Wang X, Liang J, Zhang Z, Chen W (2021) A novel electrospinning polyacrylonitrile separator with dip-coating of zeolite and phenoxy resin for Li-ion batteries. Membranes (Basel) 11(4):267

    Article  CAS  PubMed  Google Scholar 

  11. Ali H, Khan HA, Pecht MG (2021) Circular economy of Li Batteries: technologies and trends. J Energy Storage 40:102690

    Article  Google Scholar 

  12. Liu Q, Zhu Q, Zhu W, Yi X (2022) Influence of aerogel felt with different thickness on thermal runaway propagation of 18650 lithium-ion battery. Electrochemistry 90(8):087003–087003

    Article  CAS  Google Scholar 

  13. Lv S, Wang X, Lu W, Zhang J, Ni H (2021) The influence of temperature on the capacity of lithium ion batteries with different anodes. Energies 15(1):60

    Article  Google Scholar 

  14. Yu D, Ren D, Dai K, Zhang H, Zhang J, Yang B, Ma S, Wang X, You Z (2021) Failure mechanism and predictive model of lithium-ion batteries under extremely high transient impact. J Energy Storage 43:103191

    Article  Google Scholar 

  15. Xiao W, Song J, Huang L, Yang Z, Qiao Q (2020) PVA-ZrO2 multilayer composite separator with enhanced electrolyte property and mechanical strength for lithium-ion batteries. Ceram Int 46(18):29212–29221

    Article  CAS  Google Scholar 

  16. Okumura T, Taminato S, Miyazaki Y, Kitamura M, Saito T, Takeuchi T, Kobayashi H (2020) LISICON-based amorphous oxide for bulk-type all-solid-state Lithium-ion battery. ACS Applied Energy Mater 3(4):3220–3229

    Article  CAS  Google Scholar 

  17. Liu K, Zhang Q, Thapaliya BP, Sun X-G, Ding F, Liu X, Zhang J, Dai S (2020) In situ polymerized succinonitrile-based solid polymer electrolytes for lithium ion batteries. Solid State Ionics 345:115159

    Article  CAS  Google Scholar 

  18. Zhao M, Xu G, Lu D, Xie B, Huang L, Wang W, Cui G (2021) Formulating a non-flammable highly concentrated dual-salt electrolyte for wide temperature high-nickel lithium ion batteries. J Electrochem Soc 168(5):050511

    Article  CAS  Google Scholar 

  19. Zou Y, Shen Y, Wu Y, Xue H, Guo Y, Liu G, Wang L, Ming J (2020) A designed durable electrolyte for high-voltage lithium-ion batteries and mechanism analysis. Chemistry 26(35):7930–7936

    Article  CAS  PubMed  Google Scholar 

  20. Haridas AK, Nguyen QA, Terlier T, Blaser R, Biswal SL (2021) Investigating the Compatibility of TTMSP and FEC Electrolyte Additives for LiNi0.5Mn0.3Co0.2O2 (NMC)–Silicon Lithium-Ion Batteries. ACS Appl Mater Interf 13(2):2662–2673

    Article  CAS  Google Scholar 

  21. Liu X, Xu Z, Iqbal A, Chen M, Ali N, Low C, Qi R, Zai J, Qian X (2021) Chemical coupled PEDOT:PSS/Si Electrode: suppressed electrolyte consumption enables long-term stability. Nano-Micro Lett 13(1). https://doi.org/10.1007/s40820-020-00564-5

  22. Yang Y, Wu Q, Wang D, Ma C, Chen Z, Zhu C, Gao Y, Li C (2020) Decoupling the mechanical strength and ionic conductivity of an ionogel polymer electrolyte for realizing thermally stable lithium-ion batteries. J Membrane Sci 595:117549

    Article  CAS  Google Scholar 

  23. Zhou H, He P, Zhu X, Deng H, Yang H, Qiao Y, Chang Z (2021) Applications of metal-organic frameworks (mofs) materials in lithium-ion battery/lithium-metal battery electrolytes. Acta Chim Sinica 79(2):139

    Article  Google Scholar 

  24. Liu X, Zhang B, Wu Y, Chen J, Fang M, Wang L, Wang L (2020) The effects of polybenzimidazole nanofiber separator on the safety and performance of lithium-ion batteries: Characterization and analysis from the perspective of mechanism. J Power Sources 475:228624

    Article  CAS  Google Scholar 

  25. Wang Q-J, Zhang P, Wang B, Fan L-Z (2021) A novel gel polymer electrolyte based on trimethylolpropane trimethylacrylate/ionic liquid via in situ thermal polymerization for lithium-ion batteries. Electrochim Acta 370:137706

    Article  CAS  Google Scholar 

  26. Tan C, Cui L, Li Y, Qin X, Li Y, Pan Q, Zheng F, Wang H, Li Q (2021) Stabilized cathode interphase for enhancing electrochemical performance of LiNi0.5Mn1.5O4-based lithium-ion battery via cis-1,2,3,6-Tetrahydrophthalic anhydride. ACS Appl Mater Interf 13(15):18314–18323

    Article  CAS  Google Scholar 

  27. Yu X, Wang L, Ma J, Sun X, Zhou X, Cui G (2020) Selectively wetted rigid-flexible coupling polymer electrolyte enabling superior stability and compatibility of high-voltage lithium metal batteries. Adv Energy Mater 10(18):1903939

    Article  CAS  Google Scholar 

  28. Zhang Q, Liu K, Li C, Li L, Liu X, Li W, Zhang J (2021) In situ induced surface reconstruction of single-crystal lithium-ion cathode toward effective interface compatibility. ACS Appl Mater Interf 13(11):13771–13780

    Article  CAS  Google Scholar 

  29. Liu T, Zhang J, Han W, Zhang J, Ding G, Dong S, Cui G (2020) Review—in situ polymerization for integration and interfacial protection towards solid state lithium batteries. J Electrochem Soc 167(7):070527

    Article  CAS  Google Scholar 

  30. Zhang Y, Chen S, Chen Y, Li L (2021) Functional polyethylene glycol-based solid electrolytes with enhanced interfacial compatibility for room-temperature lithium metal batteries. Mater Chem Front 5(9):3681–3691

    Article  CAS  Google Scholar 

  31. Zhou W, Chen J, Xu X, Han X, Chen M, Yang L, Hirano SI (2021) Interface engineering of silicon and carbon by forming a graded protective sheath for high-capacity and long-durable lithium-ion batteries. ACS Appl Mater Interf 13(13):15216–15225

    Article  CAS  Google Scholar 

  32. Hu F, Li Y, Wei Y, Yang J, Hu P, Rao Z, Chen X, Yuan L, Li Z (2020) construct an ultrathin bismuth buffer for stable solid-state lithium metal batteries. ACS Appl Mater Interf 12(11):12793–12800

    Article  CAS  Google Scholar 

  33. Ma Y, Wang C, Ma J, Xu G, Chen Z, Du X, Zhang S, Zhou X, Cui G, Chen L (2020) Interfacial chemistry of γ-glutamic acid derived block polymer binder directing the interfacial compatibility of high voltage LiNi0.5Mn1.5O4 electrode. Sci China Chem 64(1):92–100

    Article  Google Scholar 

  34. Il’ina EA, Raskovalov AA (2020) Studying of superionic solid electrolyte Li7La3Zr2O12 stability by means of chemical thermodynamics for application in all-solid-state batteries. Electrochimica Acta 330:135220

    Article  Google Scholar 

  35. Feng H, Yan H (2022) State of health estimation of large-cycle lithium-ion batteries based on error compensation of autoregressive model. J Energy Storage 52:104869

    Article  Google Scholar 

  36. Wu-Liang F, Fei W, Xing Z, Xiao J, Fu-Dong H, Chun-Sheng W (2020) Stability of interphase between solid state electrolyte and electrode. Acta Phys Sinica 69(22):228206–228206

    Article  Google Scholar 

  37. He Y, Li H, Huo S, Chen Y, Zhang Y, Wang Y, Cai W, Zeng D, Li C, Cheng H (2021) Enabling interfacial stability via 3D networking single ion conducting nano fiber electrolyte for high performance lithium metal batteries. J Power Sources 490:229545

    Article  CAS  Google Scholar 

  38. Zou X, Lu Q, Zhang X, Ran R, Zhou W, Liao K, Shao Z (2020) Achieving safe and dendrite-suppressed solid-state Li batteries via a novel self-extinguished trimethyl phosphate-based wetting agent. Energy Fuels 34(9):11547–11556

    Article  CAS  Google Scholar 

  39. Wang J, Zhang S, Hu X (2021) A fault diagnosis method for lithium-ion battery packs using improved rbf neural network. Front Energy Res 9. https://doi.org/10.3389/fenrg.2021.702139

  40. Suzuki S, Okada H, Yabumoto K, Matsuda S, Mima Y, Kimura N, Kimura K (2021) Non-destructive visualization of short circuits in lithium-ion batteries by a magnetic field imaging system. Jpn J Appl Phys 60(5):056502

    Article  CAS  Google Scholar 

  41. Jung S-K, Gwon H, Yoon G, Miara LJ, Lacivita V, Kim J-S (2021) Pliable lithium superionic conductor for all-solid-state batteries. ACS Energy Lett 6(5):2006–2015

    Article  CAS  Google Scholar 

  42. Dong Y, Su P, He G, Zhao H, Bai Y (2021) Constructing compatible interface between Li7La3Zr2O12 solid electrolyte and LiCoO2 cathode for stable cycling performances at 4.5 V. Nanoscale 13(16):7822–7830

    Article  CAS  PubMed  Google Scholar 

  43. Chen Y, Niu Y, Lin C, Li J, Lin Y, Xu G, Palmer RE, Huang Z (2020) Insight into the intrinsic mechanism of improving electrochemical performance via constructing the preferred crystal orientation in lithium cobalt dioxide. Chem Eng J 399:125708

    Article  CAS  Google Scholar 

  44. Huang W, Li Y, Gu H, Wang J, Zhong Q (2020) Gel Polymer electrolyte with enhanced performance based on lignocellulose modified by NaOH/Urea for lithium-sulfur batteries. ChemistrySelect 5(43):13461–13468

    Article  CAS  Google Scholar 

  45. Lin Z, Guo X, Yang Y, Tang M, Wei Q, Yu H (2021) Block copolymer electrolyte with adjustable functional units for solid polymer lithium metal battery. J Energy Chem 52:67–74

    Article  CAS  Google Scholar 

  46. Li X, Han X, Zhang H, Hu R, Du X, Wang P, Zhang B, Cui G (2020) Frontier orbital energy-customized ionomer-based polymer electrolyte for high-voltage lithium metal batteries. ACS Appl Mater Interf 12(46):51374–51386

    Article  CAS  Google Scholar 

  47. Tsai C-L, Yu S, Tempel H, Kungl H, Eichel R-A (2020) All-ceramic Li batteries based on garnet structured Li7La3Zr2O12. Mater Technol 35(9–10):656–674

    Article  CAS  Google Scholar 

  48. Zhang Z, Chen S, Yao X, Cui P, Duan J, Luo W, Huang Y, Xu X (2020) Enabling high-areal-capacity all-solid-state lithium-metal batteries by tri-layer electrolyte architectures. Energy Storage Mater 24:714–718

    Article  Google Scholar 

  49. Zhang J, Li L, Zheng C, Xia Y, Gan Y, Huang H, Liang C, He X, Tao X, Zhang W (2020) Silicon-doped argyrodite solid electrolyte li6ps5i with improved ionic conductivity and interfacial compatibility for high-performance all-solid-state lithium batteries. ACS Appl Mater Interf 12(37):41538–41545

    Article  Google Scholar 

  50. Bashiri P, Nazri G (2022) Solid state lithium ion conductors for lithium batteries. Phys Sci Rev 0(0). https://doi.org/10.1515/psr-2021-0070

  51. He M, Zhang L, Li J (2021) Theoretical investigation on interactions between lithium ions and two-dimensional halide perovskite for solar-rechargeable batteries. Appl Surface Sci 541:148509

    Article  CAS  Google Scholar 

  52. Okumura T, Shiba Y, Sakamoto N, Kobayashi T, Hashimoto S, Doguchi K, Ogaki H, Takeuchi T, Kobayashi H (2021) Zr- and Ce-doped Li6Y(BO3)3 electrolyte for all-solid-state lithium-ion battery. RSC Adv 11(27):16530–16536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Duan J, Yuan R, Huang H, Sun C, Lei J, Yuan X, Fan J, Chen Z, Zheng M, Dong Q (2021) Geminal dicationic ionic liquid-based freestanding ion membrane for high-safety lithium batteries. ACS Appl Mater Interf 13(14):16238–16245

    Article  CAS  Google Scholar 

  54. Hu W, Zhao S (2022) Remaining useful life prediction of lithium-ion batteries based on wavelet denoising and transformer neural network. Front Energy Res 10. https://doi.org/10.3389/fenrg.2022.969168

  55. Gao L, Li J, Sarmad B, Cheng B, Kang W, Deng N (2020) A 3D polyacrylonitrile nanofiber and flexible polydimethylsiloxane macromolecule combined all-solid-state composite electrolyte for efficient lithium metal batteries. Nanoscale 12(26):14279–14289

    Article  CAS  PubMed  Google Scholar 

  56. Li X, Cong L, Ma S, Shi S, Li Y, Li S, Chen S, Zheng C, Sun L, Liu Y, Xie H (2021) Low resistance and high stable solid-liquid electrolyte interphases enable high-voltage solid-state lithium metal batteries. Adv Funct Mater 31(20):2010611

    Article  CAS  Google Scholar 

  57. Cong L, Li Y, Lu W, Jie J, Liu Y, Sun L, Xie H (2020) Unlocking the Poly(vinylidene fluoride-co-hexafluoropropylene)/Li10GeP2S12 composite solid-state Electrolytes for Dendrite-Free Li metal batteries assisting with perfluoropolyethers as bifunctional adjuvant. J Power Sources 446:227365

    Article  CAS  Google Scholar 

  58. Liang J, Sun Y, Zhao Y, Sun Q, Luo J, Zhao F, Lin X, Li X, Li R, Zhang L, Lu S, Huang H, Sun X (2020) Engineering the conductive carbon/PEO interface to stabilize solid polymer electrolytes for all-solid-state high voltage LiCoO2 batteries. J Mater Chem A 8(5):2769–2776

    Article  CAS  Google Scholar 

  59. Huang Y, Liu Q, Chen L, Tao J, Zhao G, Chen Y, Li J, Lin Y, Huang Z (2020) Pathways toward Improved Performance of NCM523 Pouch Cell via Incorporating Low-Cost Al2O3 and Graphene. ACS Applied Energy Mater 3(11):10920–10930

    Article  CAS  Google Scholar 

  60. Yang H, Li J, Sun Z, Fang R, Wang D-W, He K, Cheng H-M, Li F (2020) Reliable liquid electrolytes for lithium metal batteries. Energy Storage Mater 30:113–129

    Article  Google Scholar 

  61. Apostolova RD, Shembel’ EM (2021) K, Na–vanadium oxide compounds for lithium-ion batteries: synthesis and electrochemical performance in a redox reaction with lithium. Surface Eng Appl Electrochem 57(6):644–650

    Article  Google Scholar 

  62. Liu X, Xin X, Shen L, Gu Z, Wu J, Yao X (2021) Poly(methyl methacrylate)-based gel polymer electrolyte for high-performance solid state li–o2 battery with enhanced cycling stability. ACS Appl Energy Mater 4(4):3975–3982

    Article  CAS  Google Scholar 

  63. Pan X, Sun H, Wang Z, Huang H, Chang Q, Li J, Gao J, Wang S, Xu H, Li Y, Zhou W (2020) High Voltage stable polyoxalate catholyte with cathode coating for all-solid-state Li-Metal/NMC622 batteries. Adv Energy Mater 10(42):2002416

    Article  CAS  Google Scholar 

  64. Sun J, Hwang JY, Jankowski P, Xiao L, Sanchez JS, Xia Z, Lee S, Talyzin AV, Matic A, Palermo V, Sun YK, Agostini M (2021) Critical role of functional groups containing N, S, and O on graphene surface for stable and fast charging li-s batteries. Small 17(17):e2007242

    Article  PubMed  Google Scholar 

  65. Zhang Q, Liu B, Wang J, Li Q, Li D, Guo S, Xiao Y, Zeng Q, He W, Zheng M, Ma Y, Huang S (2020) The optimized interfacial compatibility of metal-organic frameworks enables a high-performance quasi-solid metal battery. ACS Energy Lett 5(9):2919–2926

    Article  CAS  Google Scholar 

  66. Wu J, Shen L, Zhang Z, Liu G, Wang Z, Zhou D, Wan H, Xu X, Yao X (2020) All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes. Electrochem Energy Rev 4(1):101–135

    Article  Google Scholar 

  67. Wu J, Liu S, Han F, Yao X, Wang C (2021) Lithium/Sulfide all-solid-state batteries using sulfide electrolytes. Adv Mater 33(6):e2000751

    Article  PubMed  Google Scholar 

  68. Chen S, Xie D, Liu G, Mwizerwa JP, Zhang Q, Zhao Y, Xu X, Yao X (2018) Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application. Energy Storage Mater 14:58–74

    Article  Google Scholar 

  69. Wan H, Mwizerwa JP, Qi X, Liu X, Xu X, Li H, Hu YS, Yao X (2018) Core-Shell Fe(1–x)S@Na(2.9)PS(3.95)Se(0.05) nanorods for room temperature all-solid-state sodium batteries with high energy density. ACS Nano 12(3):2809–2817

    Article  CAS  PubMed  Google Scholar 

  70. Liu G, Shi J, Zhu M, Weng W, Shen L, Yang J, Yao X (2021) Ultra-thin free-standing sulfide solid electrolyte film for cell-level high energy density all-solid-state lithium batteries. Energy Storage Mater 38:249–254

    Article  Google Scholar 

  71. Wan H, Liu S, Deng T, Xu J, Zhang J, He X, Ji X, Yao X, Wang C (2021) Bifunctional interphase-enabled Li10GeP2S12 electrolytes for lithium-sulfur battery. ACS Energy Lett 6(3):862–868

    Article  CAS  Google Scholar 

  72. Wan H, Mwizerwa JP, Han F, Weng W, Yang J, Wang C, Yao X (2019) Grain-boundary-resistance-less Na3SbS4-Se solid electrolytes for all-solid-state sodium batteries. Nano Energy 66:104109

    Article  CAS  Google Scholar 

  73. Peng G, Yao X, Wan H, Huang B, Yin J, Ding F, Xu X (2016) Insights on the fundamental lithium storage behavior of all-solid-state lithium batteries containing the LiNi0.8Co0.15Al0.05O2 cathode and sulfide electrolyte. J Power Sources 307:724–730

    Article  CAS  Google Scholar 

  74. Wan H, Weng W, Han F, Cai L, Wang C, Yao X (2020) Bio-inspired nanoscaled electronic/ionic conduction networks for room-temperature all-solid-state sodium-sulfur battery. Nano Today 33:100860

    Article  CAS  Google Scholar 

  75. Wan H, Cai L, Han F, Mwizerwa JP, Wang C, Yao X (2019) Construction of 3D electronic/ionic conduction networks for all-solid-state lithium batteries. Small 15(50):e1905849

    Article  PubMed  Google Scholar 

  76. Zhang Y (2021) Novel feedback-bayesian bp neural network combined with extended kalman filtering for the battery state-of-charge estimation. Int J Electrochem Sci https://doi.org/10.20964/2021.06.40

  77. Gao K-N, Wang H-R, He M-H, Li Y-Q, Cui Z-H, Mao Y, Zhang T (2020) Interfacial integration and roll forming of quasi-solid-state Li–O2 battery through solidification and gelation of ionic liquid. J Power Sources 463:228179

    Article  CAS  Google Scholar 

  78. Zheng G, Wang D, Tian S, Ren M, Song M (2021) Effect of microstructure and contact interfaces of cobalt MOFs-derived carbon matrix composite electrode materials on lithium storage performance. Energy 222:119914

    Article  CAS  Google Scholar 

  79. Liu J, Duan Q, Qi K, Liu Y, Sun J, Wang Z, Wang Q (2022) Capacity fading mechanisms and state of health prediction of commercial lithium-ion battery in total lifespan. J Energy Storage 46:103910

    Article  Google Scholar 

  80. Chan KH, Malik M, Azimi G (2022) Separation of lithium, nickel, manganese, and cobalt from waste lithium-ion batteries using electrodialysis. Resour, Conserv Recycling 178:106076

    Article  CAS  Google Scholar 

  81. Kong L, Das D, Pecht MG (2022) The distribution and detection issues of counterfeit lithium-ion batteries. Energies 15(10):3798

    Article  CAS  Google Scholar 

  82. Lybbert M, Ghaemi Z, Balaji AK, Warren R (2021) Integrating life cycle assessment and electrochemical modeling to study the effects of cell design and operating conditions on the environmental impacts of lithium-ion batteries. Renew Sustain Energy Rev 144:111004

    Article  CAS  Google Scholar 

  83. Huang Y, Chen B, Duan J, Yang F, Wang T, Wang Z, Yang W, Hu C, Luo W, Huang Y (2020) Graphitic carbon nitride (g-C3 N4): an interface enabler for solid-state lithium metal batteries. Angew Chem Int Ed Engl 59(9):3699–3704

    Article  CAS  PubMed  Google Scholar 

  84. Bugybay ZT, Aitkulov MT, Beisenova EE, Akhanov AM (2022) Application of the neutron radiography method to study the migration of lithium ions in electric batteries during discharge. Recent Contrib Phys 81(2). https://doi.org/10.26577/RCPh.2022.v81.i2.010

  85. Wang L (2021) Deformation and failure properties of lithium-ion battery under axial nail penetration. J Electrochem Energy Conv Storage 18(2). https://doi.org/10.1115/1.4049132

  86. Jiang Y, Zhao H, Yue L, Liang J, Li T, Liu Q, Luo Y, Kong X, Lu S, Shi X, Zhou K, Sun X (2021) Recent advances in lithium-based batteries using metal organic frameworks as electrode materials. Electrochem Commun 122:106881

    Article  CAS  Google Scholar 

  87. Li J, Huang Y, Huang W, Tao J, Lv F, Ye R, Lin Y, Li YY, Huang Z, Lu J (2021) Simple Designed micro-nano si-graphite hybrids for lithium storage. Small 17(8):e2006373

    Article  PubMed  Google Scholar 

  88. An Z (2021) Research on residual life prediction method of lithium ion battery for pure electric vehicle. Int J Mater Product Technol 63(1/2):86

    Article  CAS  Google Scholar 

  89. Liu X, Tao H, Tang C, Yang X (2022) Anthracite-derived carbon as superior anode for lithium/potassium-ion batteries. Chem Eng Sci 248:117200

    Article  CAS  Google Scholar 

  90. Deng Z, Yang L, Yang Y, Wang Z, Zhang P (2022) Application of electrochemical model of a lithium-ion battery. Chem Technol Fuels Oils 58(3):519–529

    Article  CAS  Google Scholar 

  91. Beletskii EV, Kal’nin AY, Luk’yanov DA, Kamenskii MA, Anishchenko DV, Levin OV (2021) A polymer layer of switchable resistance for the overcharge protection of lithium-ion batteries. Russ J Electrochem 57(10):1028–1036

    Article  CAS  Google Scholar 

  92. Zhang Q, Niu J, Zhao Z, Wang Q (2022) Research on the effect of thermal runaway gas components and explosion limits of lithium-ion batteries under different charge states. J Energy Storage 45:103759

    Article  Google Scholar 

  93. Liu H, Liu X, Li W, Guo X, Wang Y, Wang G, Zhao D (2017) Porous carbon composites for next generation rechargeable lithium batteries. Adv Energy Mater 7(24):1700283

    Article  Google Scholar 

  94. Sotowa C, Origi G, Takeuchi M, Nishimura Y, Takeuchi K, Jang IY, Kim YJ, Hayashi T, Kim YA, Endo M, Dresselhaus MS (2008) The reinforcing effect of combined carbon nanotubes and acetylene blacks on the positive electrode of lithium-ion batteries. Chemsuschem 1(11):911–915

    Article  CAS  PubMed  Google Scholar 

  95. Di Lecce D, Andreotti P, Boni M, Gasparro G, Rizzati G, Hwang J-Y, Sun Y-K, Hassoun J (2018) Multiwalled carbon nanotubes anode in lithium-ion battery with LiCoO2, Li[Ni1/3Co1/3Mn1/3]O2, and LiFe1/4Mn1/2Co1/4PO4 cathodes. ACS Sustain Chem Eng 6(3):3225–3232

    Article  Google Scholar 

  96. Luo Z, Ji H, Zhu G, Li F, Zhou L, Luo K (2020) Methods for improving the stability of lithium electrodes and their application in lithium-oxygen batteries. Material Guide 34(19):8

  97. Ha S-H, Lee J-I, Yoon H, Park T-R, Baek J, Kim J-S, Moon G-W (2022) Frequency-variable resonant self-heating technique for Lithium-Ion Batteries at low temperature. IEEE Trans Aerosp Electron Syst 58(4):3399–3410

    Article  Google Scholar 

  98. Liu Q, Zhu Q, Zhu W, Yi X, Han X (2022) Thermal runaway characteristics of 18650 NCM Lithium-ion batteries under the different initial pressures. Electrochem 90(8):087004–087004

    Article  CAS  Google Scholar 

  99. Gerold E, Luidold S, Antrekowitsch H (2021) Separation and Efficient Recovery of Lithium from Spent Lithium-Ion Batteries. Metals 11(7):1091

    Article  CAS  Google Scholar 

  100. Pan X, Liu L, Yang P, Zhang J, An M (2020) Effect of interface wetting on the performance of gel polymer electrolytes-based solid-state lithium metal batteries. Solid State Ionics 357:115466

    Article  CAS  Google Scholar 

  101. Kwon YH, Woo SW, Jung HR, Yu HK, Kim K, Oh BH, Ahn S, Lee SY, Song SW, Cho J, Shin HC, Kim JY (2012) Cable-type flexible lithium ion battery based on hollow multi-helix electrodes. Adv Mater 24(38):5192–5197

    Article  CAS  PubMed  Google Scholar 

  102. Maire P, Evans A, Kaiser H, Scheifele W, Novák P (2008) Colorimetric determination of lithium content in electrodes of lithium-ion batteries. J Electrochem Soc 155(11):A862

    Article  CAS  Google Scholar 

  103. Jiang Z, Liang T, Liu Y, Zhang S, Li Z, Wang D, Wang X, Xia X, Gu C, Tu J (2020) Improved ionic conductivity and li dendrite suppression capability toward Li7P3S11-based solid electrolytes triggered by Nb and O cosubstitution. ACS Appl Mater Interf 12(49):54662–54670

    Article  CAS  Google Scholar 

  104. Zhang Z, Zhang P, Liu Z, Du B, Peng Z (2020) A novel zwitterionic ionic liquid-based electrolyte for more efficient and safer lithium-sulfur batteries. ACS Appl Mater Interf 12(10):11635–11642

    Article  CAS  Google Scholar 

  105. Xu X, Wang L, Fei H, Ci L (2019) Boron nitride doped Li7P3S11 solid electrolyte with improved interfacial compatibility and application in all-solid-state Li/S battery. J Mater Sci: Mater Electron 30(21):19119–19125

    CAS  Google Scholar 

  106. Xu X, Hui KS, Hui KN, Wang H, Liu J (2020) Recent advances in the interface design of solid-state electrolytes for solid-state energy storage devices. Mater Horiz 7(5):1246–1278

    Article  CAS  Google Scholar 

  107. Yue J, Yan M, Yin Y-X, Guo Y-G (2018) Progress of the interface design in all-solid-state li-s batteries. Adv Funct Mater 28(38):1707533

    Article  Google Scholar 

  108. Hou W, Yang Y, Fang L, Mao Y, Sun W, Bai Y, Sun K, Wang Z (2021) Perovskite with in situ exsolved cobalt nanometal heterostructures for high rate and stable lithium-sulfur batteries. Chem Eng J 409:128079

    Article  CAS  Google Scholar 

  109. Xu Y-H, Li W-Z, Fan B, Fan P, Luo Z-K, Wang F, Zhang X-H, Ma H-L, Xue B (2021) Stabilizing electrode/electrolyte interface in Li-S batteries using liquid/solid Li2S-P2S5 hybrid electrolyte. Appl Surface Sci 546:149034

    Article  CAS  Google Scholar 

  110. Song Y-Z, Yuan J-J, Yin X, Zhang Y, Lin C-E, Sun C-C, Fang L-F, Zhu B, Zhu L-P (2018) Effect of polyphenol-polyamine treated polyethylene separator on the ionic conduction and interface properties for lithium-metal anode batteries. J Electroanal Chem 816:68–74

    Article  CAS  Google Scholar 

  111. Ma Q, Yue J, Fan M, Tan SJ, Zhang J, Wang WP, Liu Y, Tian YF, Xu Q, Yin YX, You Y, Luo A, Xin S, Wu XW, Guo YG (2021) Formulating the electrolyte towards high-energy and safe rechargeable lithium-metal batteries. Angew Chem Int Ed Engl 60:16554

    Article  CAS  PubMed  Google Scholar 

  112. Cao Y, Lou S, Sun Z, Tang W, Ma Y, Zuo P, Wang J, Du C, Gao Y, Yin G (2020) Solvate ionic liquid boosting favorable interfaces kinetics to achieve the excellent performance of Li4Ti5O12 anodes in Li10GeP2S12 based solid-state batteries. Chem Eng J 382:123046

    Article  CAS  Google Scholar 

  113. Hu Z, Xian F, Guo Z, Lu C, Du X, Cheng X, Zhang S, Dong S, Cui G, Chen L (2020) Nonflammable nitrile deep eutectic electrolyte enables high-voltage lithium metal batteries. Chem Mater 32(8):3405–3413

    Article  CAS  Google Scholar 

  114. Chen Y, Wen K, Chen T, Zhang X, Armand M, Chen S (2020) Recent progress in all-solid-state lithium batteries: The emerging strategies for advanced electrolytes and their interfaces. Energy Storage Mater 31:401–433

    Article  Google Scholar 

  115. Wang Z, Tam L-YS, Lu Y-C (2019) Flexible solid flow electrodes for high-energy scalable energy storage. Joule 3(7):1677–1688

    Article  CAS  Google Scholar 

  116. Wang P, Yang L, Wang H, Tartakovsky DM, Onori S (2021) Temperature estimation from current and voltage measurements in lithium-ion battery systems. J Energy Storage 34:102133

    Article  Google Scholar 

  117. Qiu L, Yang W, Hu X, Li W (2022) High performance study of lithium carboxymethylcellulose as water‐soluble binder for lithium supplementation in lithium batteries. Starch - Stärke 74(7–8)

  118. Wu Z, Xie Z, Yoshida A, Wang J, Yu T, Wang Z, Hao X, Abudula A, Guan G (2020) Nickel phosphate nanorod-enhanced polyethylene oxide-based composite polymer electrolytes for solid-state lithium batteries. J Colloid Interface Sci 565:110–118

    Article  CAS  PubMed  Google Scholar 

  119. Chen PY, Yan C, Chen P, Zhang R, Yao YX, Peng HJ, Yan LT, Kaskel S, Zhang Q (2021) Selective permeable lithium-ion channels on lithium metal for practical lithium-sulfur pouch cells. Angew Chem Int Ed Engl 60(33):18031–18036

    Article  CAS  PubMed  Google Scholar 

  120. Sun Q, Lv H, Wang S, Gao S, Wei K (2021) Optimized state of charge estimation of lithium-ion battery in smes/battery hybrid energy storage system for electric vehicles. IEEE Trans Appl Supercond 31(8):1–6

    Article  Google Scholar 

  121. Gao Z, Rao S, Zhang T, Li W, Yang X, Chen Y, Zheng Y, Ding Y, Dong T, Li S (2022) Design strategies of flame-retardant additives for lithium ion electrolyte. J Electrochem Energy Conv Storage 19(3). https://doi.org/10.1115/1.4053968

  122. Chen H, Cao Z, Gu J, Cui Y, Zhang Y, Zhao Z, Cheng Z, Zhao Q, Li B, Yang S (2021) Creating new battery configuration associated with the functions of primary and rechargeable lithium metal batteries. Adv Energy Mater 11(14):2003746

    Article  CAS  Google Scholar 

  123. Gangaja B, Nair S, Santhanagopalan D (2021) Reuse, recycle, and regeneration of lifepo4 cathode from spent lithium-ion batteries for rechargeable lithium- and sodium-ion batteries. ACS Sustain Chem Eng 9(13):4711–4721

    Article  CAS  Google Scholar 

  124. Gao Z, Xie H, Yu H, Ma B, Liu X, Chen S (2022) Study on lithium-ion battery degradation caused by side reactions in fast-charging process. Front Energy Res 10. https://doi.org/10.3389/fenrg.2022.905710

  125. Liu X, Huang T, Yu A (2015) A new, high energy rechargeable lithium ion battery with a surface-treated Li1.2Mn0.54Ni0.13Co0.13O2 cathode and a nano-structured Li4Ti5O12 anode. J Alloys and Compd 648:7–12

    Article  CAS  Google Scholar 

  126. Duan B, Wang W, Wang A, Yu Z, Zhao H, Yang Y (2014) A new lithium secondary battery system: the sulfur/lithium-ion battery. J Mater Chem A 2(2):308–314

    Article  CAS  Google Scholar 

  127. Liao H, Chen H, Zhou F, Zhang Z (2020) A novel SiO2 nanofiber-supported organic–inorganic gel polymer electrolyte for dendrite-free lithium metal batteries. J Mater Sci 55(22):9504–9515

    Article  CAS  Google Scholar 

  128. Li C, Xu X, Song T, Zhu X, Li Y, Jia H, Liu Y (2021) Fabrication of GeS-graphene composites for electrode materials in lithium-ion batteries. Mater Res Express 8(11):115013

    Article  CAS  Google Scholar 

  129. Wang W-P, Zhang J, Li X-T, Yin Y-X, Xin S, Guo Y-G (2021) Stabilizing the electrochemistry of lithium-selenium battery via in situ gelated polymer electrolyte: a look from anode. Chem Res Chin Univ 37(2):298–303

    Article  CAS  Google Scholar 

  130. Song X, Qi W, Zhang H, Wang G (2020) Construction of core-shell nanofiber membrane with enhanced interface compatibility for lithium-metal battery. Solid State Ionics 347:115266

    Article  CAS  Google Scholar 

  131. Wang H, Yu K, Mao L, He Q, Wu Q, Li Z (2022) Evaluation of Lithium-Ion Battery Pack Capacity Consistency Using One-Dimensional Magnetic Field Scanning. IEEE Trans Instrum Meas 71:1–10

    Article  Google Scholar 

  132. Yang Y, Xu L, Yang S-J, Yan C, Huang J-Q (2022) Electrolyte inhomogeneity induced lithium plating in fast charging lithium-ion batteries. J Energy Chem 73:394–399

    Article  CAS  Google Scholar 

  133. Yang F, Sun W, Bai Y, Xu T, Cai K, Cai H, Sun K, Wang Z (2020) Rational design of sandwich-like “Gel–Liquid–Gel” electrolytes for dendrite-free lithium metal batteries. Ind Eng Chem Res 59(32):14207–14216

    Article  CAS  Google Scholar 

  134. Bi H, Sui G, Yang X (2014) Studies on polymer nanofibre membranes with optimized core–shell structure as outstanding performance skeleton materials in gel polymer electrolytes. J Power Sources 267:309–315

    Article  CAS  Google Scholar 

  135. Jie J, Liu Y, Cong L, Zhang B, Lu W, Zhang X, Liu J, Xie H, Sun L (2020) High-performance PVDF-HFP based gel polymer electrolyte with a safe solvent in Li metal polymer battery. J Energy Chem 49:80–88

    Article  Google Scholar 

  136. Shao D, Rao D, Wu A, Luo X (2022) How the sodium cations in anode affect the performance of a Lithium-ion battery. Batteries 8(8):78

    Article  CAS  Google Scholar 

  137. Song D, Chen X, Lin Z, Tang Z, Ma W, Zhang Q, Li Y, Zhang X (2021) Usability identification framework and high-throughput screening of two-dimensional materials in Lithium Ion batteries. ACS Nano 15(10):16469–16477

    Article  CAS  PubMed  Google Scholar 

  138. Xu X, Sun X, Zhao L, Li R, Tang W (2022) Research on thermal runaway characteristics of NCM lithium-ion battery under thermal-electrical coupling abuse. Ionics 28(12):5449–5467

    Article  CAS  Google Scholar 

  139. Pan Y, Ren D, Kuang K, Feng X, Han X, Lu L, Ouyang M (2022) Novel non-destructive detection methods of lithium plating in commercial lithium-ion batteries under dynamic discharging conditions. J Power Sources 524:231075

    Article  CAS  Google Scholar 

  140. Pan K, Zhang L, Qian W, Wu X, Dong K, Zhang H, Zhang S (2020) A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries. Adv Mater 32(17):e2000399

    Article  PubMed  Google Scholar 

  141. Zhu X, Wang K, Xu Y, Zhang G, Li S, Li C, Zhang X, Sun X, Ge X, Ma Y (2021) Strategies to boost ionic conductivity and interface compatibility of inorganic - organic solid composite electrolytes. Energy Storage Mater 36:291–308

    Article  Google Scholar 

  142. Zaidi SZJ, Hassan S, Raza M, Harito C, Yuliarto B, Walsh FC (2021) Conceptualized simulation for templating carbon based nano structures for li-ion batteries: a dft investigation. J New Mater Electrochem Syst 24(2):66–72

    Article  CAS  Google Scholar 

  143. Hong G, Song W, Gao Y, Zio E, Kudreyko A (2022) An iterative model of the generalized Cauchy process for predicting the remaining useful life of lithium-ion batteries. Measurement 187:110269

    Article  Google Scholar 

  144. Zhang L, Wei S, Shao S, Shi Q, Li J (2021) Adsorption and diffusion of lithium ions on lead-free two-dimensional halide perovskite surface toward energy storage applications. Int J Energy Res 45(11):16524–16537

    Article  CAS  Google Scholar 

  145. Wang Z, Shen L, Deng S, Cui P, Yao X (2021) 10 mum-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries. Adv Mater 33(25):e2100353

    Article  PubMed  Google Scholar 

  146. Duan X, Zhu W, Ruan Z, Xie M, Chen J, Ren X (2022) Recycling of lithium batteries—a review. Energies 15(5):1611

    Article  CAS  Google Scholar 

  147. Xu B, Kong L, Wen G, Pecht MG (2021) Protection devices in commercial 18650 Lithium-Ion batteries. IEEE Access 9:66687–66695

    Article  Google Scholar 

  148. Wang Y, Zhang X, Chen Z (2022) Low temperature preheating techniques for Lithium-ion batteries: Recent advances and future challenges. Appl Energy 313:118832

    Article  CAS  Google Scholar 

  149. Han X, Wang Z, Wei Z (2021) A novel approach for health management online-monitoring of lithium-ion batteries based on model-data fusion. Appl Energy 302:117511

    Article  Google Scholar 

  150. Cheng S, Hu Y, Jiang L, Dang H, Ding Y, Duan Q, Xiao H, Sun J, Wang Q (2022) A LiFePO4 based semi-solid lithium slurry battery for energy storage and a preliminary assessment of its fire safety. Fire Technol. https://doi.org/10.1007/s10694-022-01305-3

  151. Yang J, Wang X, Zhang G, Ma A, Chen W, Shao L, Shen C, Xie K (2019) High-performance solid composite polymer electrolyte for all solid-state lithium battery through facile microstructure regulation. Front Chem 7:388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Yu S, Schmohl S, Liu Z, Hoffmeyer M, Schön N, Hausen F, Tempel H, Kungl H, Wiemhöfer HD, Eichel RA (2019) Insights into a layered hybrid solid electrolyte and its application in long lifespan high-voltage all-solid-state lithium batteries. J Mater Chem A 7(8):3882–3894

    Article  CAS  Google Scholar 

  153. Cho SM, Shim J, Cho SH, Kim J, Son BD, Lee JC, Yoon WY (2018) Quasi-Solid-state rechargeable Li-O(2) batteries with high safety and long cycle life at room temperature. ACS Appl Mater Interf 10(18):15634–15641

    Article  CAS  Google Scholar 

  154. Liu K, Lin Y, Miller JD, Liu J, Wang X (2017) Study of sucrose based room temperature solid polymer electrolyte for lithium sulfur battery. J Electrochem Soc 164(2):A447–A452

    Article  CAS  Google Scholar 

  155. Qiao-Bao Z, Zheng-Liang G, Yong Y (2020) Advance in interface and characterizations of sulfide solid electrolyte materials. Acta Phys Sinica 69(22):228803–228803

    Article  Google Scholar 

  156. Chen T, Zeng D, Zhang L, Yang M, Song D, Yan X, Yu C (2021) Sn-O dual-doped Li-argyrodite electrolytes with enhanced electrochemical performance. J Energy Chem 59:530–537

    Article  CAS  Google Scholar 

  157. Li H, Zhou D, Du C, Zhang C (2021) Parametric study on the safety behavior of mechanically induced short circuit for lithium-ion pouch batteries. J Electrochem Energy Conv Storage 18(2). https://doi.org/10.1115/1.4048705

  158. Osara JA, Ezekoye OA, Marr KC, Bryant MD (2021) A methodology for analyzing aging and performance of lithium-ion batteries: Consistent cycling application. J Energy Storage 42:103119

    Article  Google Scholar 

  159. Toor A, Wen A, Maksimovic F, Gaikwad AM, Pister KSJ, Arias AC (2021) Stencil-printed Lithium-ion micro batteries for IoT applications. Nano Energy 82:105666

    Article  CAS  Google Scholar 

  160. Hou J, Wang L, Feng X, Terada J, Lu L, Yamazaki S, Su A, Kuwajima Y, Chen Y, Hidaka T, He X, Wang H, Ouyang M (2022) Thermal runaway of lithium‐ion batteries employing flame‐retardant fluorinated electrolytes. Energy Environ Mater. https://doi.org/10.1002/eem2.12297

  161. Sun T, Shen T, Zheng Y, Ren D, Zhu W, Li J, Wang Y, Kuang K, Rui X, Wang S, Wang L, Han X, Lu L, Ouyang M (2022) Modeling the inhomogeneous lithium plating in lithium-ion batteries induced by non-uniform temperature distribution. Electrochim Acta 425:140701

    Article  CAS  Google Scholar 

  162. Xiao W, Xu H, Xuan M, Wu Z, Zhang Y, Zhang X, Zhang S, Shen Y, Shao G (2021) Stable all-solid-state battery enabled with Li6.25PS5.25Cl0.75 as fast ion-conducting electrolyte. J Energy Chem 53:147–154

    Article  CAS  Google Scholar 

  163. Huang B, Hua H, Lai P, Shen X, Li R, He Z, Zhang P, Zhao J (2022) Constructing Ion‐selective coating layer with lithium ion conductor llzo and binder li‐nafion for separator used in lithium‐sulfur batteries. ChemElectroChem 9(14). https://doi.org/10.1002/celc.202200416

  164. Huang Y, Ding R, Xu Q, Shi W, Ying D, Huang Y, Yan T, Tan C, Sun X, Liu E (2021) A conversion and pseudocapacitance-featuring cost-effective perovskite fluoride KCuF(3) for advanced lithium-ion capacitors and lithium-dual-ion batteries. Dalton Trans 50(25):8671–8675

    Article  CAS  PubMed  Google Scholar 

  165. Yudhistira R, Khatiwada D, Sanchez F (2022) A comparative life cycle assessment of lithium-ion and lead-acid batteries for grid energy storage. J Clean Prod 358:131999

    Article  CAS  Google Scholar 

  166. Ju J, Wang Y, Chen B, Ma J, Dong S, Chai J, Qu H, Cui L, Wu X, Cui G (2018) Integrated interface strategy toward room temperature solid-state lithium batteries. ACS Appl Mater Interf 10(16):13588–13597

    Article  CAS  Google Scholar 

  167. Chen T, Zhang L, Zhang Z, Li P, Wang H, Yu C, Yan X, Wang L, Xu B (2019) Argyrodite solid electrolyte with a stable interface and superior dendrite suppression capability realized by ZnO Co-Doping. ACS Appl Mater Interf 11(43):40808–40816

    Article  CAS  Google Scholar 

  168. Tewari N, Lam D, Li CHA, Halpert JE (2022) Recent advancements in batteries and photo-batteries using metal halide perovskites. Apl Mater 10(4):040905

    Article  CAS  Google Scholar 

  169. Xu ZM, Bo SH, Zhu H (2018) LiCrS(2) and LiMnS(2) cathodes with extraordinary mixed electron-ion conductivities and favorable interfacial compatibilities with sulfide electrolyte. ACS Appl Mater Interf 10(43):36941–36953

    Article  CAS  Google Scholar 

  170. Yoshino A (2022) The Lithium-ion battery: two breakthroughs in development and two reasons for the nobel prize. Bull Chem Soc Jpn 95(1):195–197

    Article  CAS  Google Scholar 

  171. Whiteley JM, Woo JH, Hu E, Nam K-W, Lee S-H (2014) Empowering the lithium metal battery through a silicon-based superionic conductor. J Electrochem Soc 161(12):A1812–A1817

    Article  Google Scholar 

  172. Dong Q, Yao X, Zhao Y, Qi M, Zhang X, Sun H, He Y, Wang D (2018) Cathodically stable Li-O2 battery operations using water-in-salt electrolyte. Chem 4(6):1345–1358

    Article  CAS  Google Scholar 

  173. Tan SJ, Yue J, Hu XC, Shen ZZ, Wang WP, Li JY, Zuo TT, Duan H, Xiao Y, Yin YX, Wen R, Guo YG (2019) Nitriding-interface-regulated lithium plating enables flame-retardant electrolytes for high-voltage lithium metal batteries. Angew Chem Int Ed Engl 58(23):7802–7807

    Article  CAS  PubMed  Google Scholar 

  174. Geng Z, Lu J, Li Q, Qiu J, Wang Y, Peng J, Huang J, Li W, Yu X, Li H (2019) Lithium metal batteries capable of stable operation at elevated temperature. Energy Storage Mater 23:646–652

    Article  Google Scholar 

  175. Liu X, Xu Z, Iqbal A, Chen M, Ali N, Low C, Qi R, Zai J, Qian X (2021) Chemical coupled PEDOT:PSS/Si electrode: suppressed electrolyte consumption enables long-term stability. Nanomicro Lett 13(1):54

    PubMed  PubMed Central  Google Scholar 

  176. Fan J, Dong T, Fang D, Li X, Mo Xe, Wen K, Chen S, Zhang S (2018) A lithium salt additive Li2ZrF6 for enhancing the electrochemical performance of high-voltage LiNi0.5Mn1.5O4 cathode. Ionics 24(10):2965–2972

    Article  CAS  Google Scholar 

  177. Menkin S, Golodnitsky D, Peled E (2009) Artificial solid-electrolyte interphase (SEI) for improved cycleability and safety of lithium–ion cells for EV applications. Electrochem Commun 11(9):1789–1791

    Article  CAS  Google Scholar 

  178. Morelly SL, Gelb J, Iacoviello F, Shearing PR, Harris SJ, Alvarez NJ, Tang MH (2018) Three-dimensional visualization of conductive domains in battery electrodes with contrast-enhancing nanoparticles. ACS Appl Energy Mater 1(9):4479–4484

    Article  CAS  Google Scholar 

  179. Subramanya U, Chua C, He Leong VG, Robinson R, Cruz Cabiltes GA, Singh P, Yip B, Bokare A, Erogbogbo F, Oh D (2020) Carbon-based artificial SEI layers for aqueous lithium-ion battery anodes. RSC Adv 10(2):674–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Li X, Yin Z, Li X, Wang C (2013) Ethylene sulfate as film formation additive to improve the compatibility of graphite electrode for lithium-ion battery. Ionics 20(6):795–801

    Article  Google Scholar 

  181. Xu J, Hu Y, liu T, Wu X (2014) Improvement of cycle stability for high-voltage lithium-ion batteries by in-situ growth of SEI film on cathode. Nano Energy 5:67–73

    Article  CAS  Google Scholar 

  182. Subramanya U et al (2020) Carbon-based artificial SEI layers for aqueous lithium-ion battery anodes. RSC Advances 10:674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Sakti AW, Wahyudi ST, Ahmad F, Darmawan N, Hardhienata H, Alatas H (2022) Effects of salt concentration on the water and ion self-diffusion coefficients of a model aqueous sodium-ion battery electrolyte. J Phys Chem B 126(11):2256–2264

    Article  CAS  PubMed  Google Scholar 

  184. Xu T, Peng Z, Wu L (2021) A novel data-driven method for predicting the circulating capacity of lithium-ion battery under random variable current. Energy 218:119530

    Article  Google Scholar 

  185. Zhang S, Liang T, Wang D, Xu Y, Cui Y, Li J, Wang X, Xia X, Gu C, Tu J (2021) A Stretchable and safe polymer electrolyte with a protecting-layer strategy for solid-state lithium metal batteries. Adv Sci 8:15

    Google Scholar 

  186. Kirad K, Chaudhari M (2021) Design of cell spacing in lithium-ion battery module for improvement in cooling performance of the battery thermal management system. J Power Sources 481:229016

    Article  CAS  Google Scholar 

  187. Yang M, Jue N, Chen Y, Wang Y (2021) Improving cyclability of lithium metal anode via constructing atomic interlamellar ion channel for lithium sulfur battery. Nanoscale Res Lett 16(1):52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Liu Q, Cai B, Li S, Yu Q, Lv F, Kang F, Wang Q, Li B (2020) Long-cycling and safe lithium metal batteries enabled by the synergetic strategy of ex situ anodic pretreatment and an in-built gel polymer electrolyte. J Mater Chem A 8(15):7197–7204

    Article  CAS  Google Scholar 

  189. Zhang S, Wang Z, Hu X, Zhu R, Liu X, Wang H (2021) Building Zn-Fe bimetal selenides heterostructures caged in nitrogen-doped carbon cubic for lithium and sodium ion batteries. J Alloys Compd 863:158329

    Article  CAS  Google Scholar 

  190. Du B, Yu Z, Yi S, He Y, Luo Y (2021) State-of-charge estimation for second-life lithium-ion batteries based on cell difference model and adaptive fading unscented Kalman filter algorithm. Int J Low-Carbon Technol 16(3):927–939

    Article  CAS  Google Scholar 

  191. Boerger EM, Gottschalk F, Drescher L, Boerger A (2021) shaking lithium-ion cells on a rocker – temperature-dependent influence of mechanical movement on lithium-ion battery lifetime. Chem Ing Tec 94(4):603–606

    Article  Google Scholar 

  192. Zhang D, Zhao W, Wang L, Chang X, Li X, Wu P (2022) Evaluation of the state of health of lithium-ion battery based on the temporal convolution network. Front Energy Res 10. https://doi.org/10.3389/fenrg.2022.929235

  193. Zhong W, Huang X, Lin Y, Cao Y, Wang Z (2021) Compact Co3O4/Co in-situ nanocomposites prepared by pulsed laser sintering as anode materials for lithium-ion batteries. J Energy Chem 58:386–390

    Article  CAS  Google Scholar 

  194. Kang D, Hart N, Koh J, Ma L, Liang W, Xu J, Sardar S, Lemmon JP (2020) Rearrange SEI with artificial organic layer for stable lithium metal anode. Energy Storage Mater 24:618–625

    Article  Google Scholar 

  195. Haruta M, Kijima Y, Hioki R, Doi T, Inaba M (2018) Artificial lithium fluoride surface coating on silicon negative electrodes for the inhibition of electrolyte decomposition in lithium-ion batteries: visualization of a solid electrolyte interphase using in situ AFM. Nanoscale 10(36):17257–17264

    Article  CAS  PubMed  Google Scholar 

  196. Wang R, Li X, Wang Z, Zhang H (2017) Electrochemical analysis graphite/electrolyte interface in lithium-ion batteries: p-Toluenesulfonyl isocyanate as electrolyte additive. Nano Energy 34:131–140

    Article  CAS  Google Scholar 

  197. Walvekar H, Beltran H, Sripad S, Pecht M (2022) Implications of the electric vehicle manufacturers’ decision to mass adopt lithium-iron phosphate batteries. IEEE Access 10:63834–63843

    Article  Google Scholar 

  198. Ge Y, Zhang F, Ren Y (2022) Lithium Ion battery health prediction via variable mode decomposition and deep learning network with self-attention mechanism. Front Energy Res 10. https://doi.org/10.3389/fenrg.2022.810490

  199. Wu ZH, Huang AC, Tang Y, Yang YP, Liu YC, Li ZP, Zhou HL, Huang CF, Xing ZX, Shu CM, Jiang JC (2021) Thermal effect and mechanism analysis of flame-retardant modified polymer electrolyte for Lithium-Ion battery. Polymers (Basel) 13(11):1675

    Article  CAS  PubMed  Google Scholar 

  200. Ma M, Zhang S, Wang L, Yao Y, Shao R, Shen L, Yu L, Dai J, Jiang Y, Cheng X, Wu Y, Wu X, Yao X, Zhang Q, Yu Y (2021) Harnessing the volume expansion of MoS(3) anode by structure engineering to achieve high performance beyond lithium-based rechargeable batteries. Adv Mater 33(45):e2106232

    Article  PubMed  Google Scholar 

  201. Xiang J, Zhang Y, Zhang B, Yuan L, Liu X, Cheng Z, Yang Y, Zhang X, Li Z, Shen Y, Jiang J, Huang Y (2021) A flame-retardant polymer electrolyte for high performance lithium metal batteries with an expanded operation temperature. Energy Environ Sci 14(6):3510–3521

    Article  CAS  Google Scholar 

  202. Shi J, Rivera A, Wu D (2022) Battery health management using physics-informed machine learning: Online degradation modeling and remaining useful life prediction. Mech Syst Sig Process 179:109347

    Article  Google Scholar 

  203. Lin J, Wei M (2021) Remaining useful life prediction of lithium-ion battery based on auto-regression and particle filter. Int J Intell Comput Cybernetics 14(2):218–237

    Article  Google Scholar 

  204. Wang H-Y, Wang F-M (2013) Electrochemical investigation of an artificial solid electrolyte interface for improving the cycle-ability of lithium ion batteries using an atomic layer deposition on a graphite electrode. J Power Sources 233:1–5

    Article  CAS  Google Scholar 

  205. Fan Z, Ding B, Zhang T, Lin Q, Malgras V, Wang J, Dou H, Zhang X, Yamauchi Y (2019) Solid/Solid interfacial architecturing of solid polymer electrolyte-based all-solid-state lithium-sulfur batteries by atomic layer deposition. Small 15(46):e1903952

    Article  PubMed  Google Scholar 

  206. Swiderska-Mocek A, Kubis A (2021) Preparation and electrochemical properties of polymer electrolyte containing lithium difluoro(oxalato)borate or lithium bis(oxalate)borate for Li-ion polymer batteries. Solid State Ionics 364:115628

    Article  CAS  Google Scholar 

  207. Jin Q, Zhang X, Gao H, Li L, Zhang Z (2020) Novel LixSiSy/Nafion as an artificial sei film to enable dendrite-free li metal anodes and high stability Li–S batteries. J Mater Chem A 8(18):8979

    Article  CAS  Google Scholar 

  208. Jia M, Wen P, Wang Z, Zhao Y, Liu Y, Lin J, Chen M, Lin X (2021) Fluorinated bifunctional solid polymer electrolyte synthesized under visible light for stable lithium deposition and dendrite-free all-solid-state batteries. Adv Funct Mater 31(27):2101736

    Article  CAS  Google Scholar 

  209. Jia X, Zhang C, Wang LY, Zhang L, Zhou X (2022) Early diagnosis of accelerated aging for lithium-ion batteries with an integrated framework of aging mechanisms and data-driven methods. IEEE Trans Trans Electrific 8(4):4722–4742

    Article  Google Scholar 

  210. Wondimkun ZT, Beyene TT, Weret MA, Sahalie NA, Huang C-J, Thirumalraj B, Jote BA, Wang D, Su W-N, Wang C-H, Brunklaus G, Winter M, Hwang B-J (2020) Binder-free ultra-thin graphene oxide as an artificial solid electrolyte interphase for anode-free rechargeable lithium metal batteries. J Power Sources 450:227589

    Article  CAS  Google Scholar 

  211. Guo H, Hou G, Guo J, Ren X, Ma X, Dai L, Guo S, Lou J, Feng J, Zhang L, Si P, Ci L (2018) Enhanced cycling performance of li–o2 battery by using a li3po4-protected lithium anode in dmso-based electrolyte. ACS Appl Energy Mater 1(10):5511–5517

    Article  CAS  Google Scholar 

  212. Tian X, Jin J, Yuan S, Chua CK, Tor SB, Zhou K (2017) Emerging 3D-printed electrochemical energy storage devices: a critical review. Adv Energy Mater 7(17):1700127

    Article  Google Scholar 

  213. Tian X, Xu B (2021) 3D printing for solid-state energy storage. Small Methods 5(12):e2100877

    Article  PubMed  Google Scholar 

  214. Kuang Y, Chen C, Kirsch D, Hu L (2019) Thick electrode batteries: principles, opportunities, and challenges. Adv Energy Mater 9(33).

Download references

Acknowledgements

This work is supported by Natural Science Foundation of Heilongjiang Province of China (LH2021E077), Heilongjiang Postdoctoral Foundation (LBH-Z20082), National Undergraduate Training Program for Innovation and Entrepreneursh(202110214033), National Undergraduate Training Program for Innovation and Entrepreneursh(202010214087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoxu Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

SSLBs refers to solid-state lithium batteries, which are a type of energy storage device that use solid materials instead of traditional liquid or gel electrolyte as the electrolyte.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zheng, G., Yuan, Z. et al. Review on interfacial compatibility of solid-state lithium batteries. Ionics 29, 1639–1666 (2023). https://doi.org/10.1007/s11581-023-04952-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-04952-w

Keywords

Navigation