Skip to main content

Advertisement

Log in

Three-dimensional self-supporting Ni2P-Ni12P5/NF heterostructure as an efficient electrocatalyst to enhance hydrogen evolution reaction

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Increasing active sites by constructing a heterostructure is a very effective method to improve the electrocatalytic performance. In this work, we synthesized a three-dimensional self-supporting Ni2P-Ni12P5/NF heterostructure supported on nickel foams by hydrothermal reaction and low-temperature phosphorization, used as an efficient hydrogen evolution reaction (HER) electrocatalyst. The structure, composition, morphology, and HER performance of the catalyst were characterized by XRD, XPS, SEM, TEM, and electrochemical workstation. The experimental results show that the Ni2P-Ni12P5/NF heterostructure demonstrates better HER catalytic activity in 0.5 M H2SO4, only requiring an overpotential of 124 mV at 10 mA cm−2 with a Tafel slope of 84.1 mV dec−1 and displaying good long-term stability. The high activity and stability of the as-synthesized Ni2P-Ni12P5/NF catalyst in HER are mainly due to the synergy between Ni2P-Ni12P5 with a unique heterostructure and nickel foam conductive substrate with a three-dimensional porous structure, which is beneficial to increase the electrocatalytic active area and thus provide more active sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mahmood N, Yao Y, Zhang JW, Pan L, Zhang X, Zou JJ (2018) Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions. Advanced Science 5:1700464

    Article  PubMed  CAS  Google Scholar 

  2. Yao Z, Zhang M, Wu H, Yang L, Li R, Wang P (2015) Donor/acceptor indenoperylene dye for highly efficient organic dye-sensitized solar cells. J Am Chem Soc 137:3799–3802

    Article  CAS  PubMed  Google Scholar 

  3. Yao ZY, Zhang M, Li RZ, Yang L, Qiao Y, Wang P (2015) A metal-free N-annulated thienocyclopentaperylene dye: power conversion efficiency of 12% for dye-sensitized solar cells. Angew Chem Int Ed 54:5994–5998

    Article  CAS  Google Scholar 

  4. Zhang JY, Wang H, Tian Y, Yan Y, Xue Q, He T, Liu HF, Yu C, Wang CD, Chen Y, Xia BY (2018) Anodic hydrazine oxidation assists energy-efficient hydrogen evolution over a bifunctional cobalt perselenide nanosheet electrode. Angew Chem Int Ed 57:7649–7653

    Article  CAS  Google Scholar 

  5. Wang XG, Kolen’ko YV, Liu LF (2015) Direct solvothermal phosphorization of nickel foam to fabricate integrated Ni2P-nanorods/Ni electrodes for efficient electrocatalytic hydrogen evolution. Chem Commun 51:6738–6741

    Article  CAS  Google Scholar 

  6. Liu X, Ni K, Wen B, Guo R, Niu C, Meng J, Li Q, Wu P, Zhu Y, Wu X, Mai L (2019) Deep reconstruction of nickel-based precatalysts for water oxidation catalysis. ACS Energy Lett 4:2585–2592

    Article  CAS  Google Scholar 

  7. Pei Y, Ge Y, Chu H, Smith W, Dong P, Ajayan PM, Ye M, Shen J (2019) Controlled synthesis of 3D porous structured cobalt-iron based nanosheets by electrodeposition as asymmetric electrodes for ultra-efficient water splitting. Appl Catal B 244:583–593

    Article  CAS  Google Scholar 

  8. Feng JX, Xu H, Dong YT, Lu XF, Tong YX, Li GR (2017) Efficient hydrogen evolution electrocatalysis using cobalt nanotubes decorated with titanium dioxide nanodots. Angew Chem Int Ed 56:2960–2964

    Article  CAS  Google Scholar 

  9. Ma M, Zheng Z, Song Z, Zhang X, Han X, Chen H, Xie Z, Kuang Q, Zheng L (2020) In situ construction and post-electrolysis structural study of porous Ni2P@C nanosheet arrays for efficient water splitting. Inorganic Chem Front 7:2960–2968

    Article  CAS  Google Scholar 

  10. Huang ZF, Song J, Li K, Tahir M, Wang YT, Pan L, Wang L, Zhang X, Zou JJ (2016) Hollow cobalt-based bimetallic sulfide polyhedra for efficient all-pH-value electrochemical and photocatalytic hydrogen evolution. J Am Chem Soc 138:1359–1365

    Article  CAS  PubMed  Google Scholar 

  11. Jing F, Lv Q, Wang Q, Chi K, Xu Z, Wang X, Wang S (2019) Self-supported 3D porous N-doped nickel selenide electrode for hydrogen evolution reaction over a wide range of pH. Electrochim Acta 304:202–209

    Article  CAS  Google Scholar 

  12. Zhai L, Benedict Lo TW, Xu ZL, Potter J, Mo J, Guo X, Tang CC, Edman Tsang SC, Lau SP (2020) In situ phase transformation on nickel-based selenides for enhanced hydrogen evolution reaction in alkaline medium. ACS Energy Lett 5:2483–2491

    Article  CAS  Google Scholar 

  13. Sun Y, Xu K, Zhao Z, Li X, Chen G, Li C (2020) Strongly coupled dual zerovalent nonmetal doped nickel phosphide nanoparticles/N, B-graphene hybrid for pH-universal hydrogen evolution catalysis. Appl Catal B 278:119284

    Article  CAS  Google Scholar 

  14. Liang K, Pakhira S, Yang Z, Nijamudheen A, Ju L, Wang M, Aguirre-Velez CI, Sterbinsky GE, Du Y, Feng Z, Mendoza-Cortes JL, Yang Y (2018) S-doped MoP nanoporous layer toward high-efficiency hydrogen evolution in pH-universal electrolyte. ACS Catal 9:651–659

    Article  CAS  Google Scholar 

  15. Liu T, Ma X, Liu D, Hao S, Du G, Ma Y, Asiri AM, Sun X, Chen L (2016) Mn doping of CoP nanosheets array: an efficient electrocatalyst for hydrogen evolution reaction with enhanced activity at all pH values. ACS Catal 7:98–102

    Article  CAS  Google Scholar 

  16. Shi Y, Xu Y, Zhuo S, Zhang J, Zhang B (2015) Ni2P nanosheets/Ni foam composite electrode for long-lived and pH-tolerable electrochemical hydrogen generation. ACS Appl Mater Interfaces 7:2376–2384

    Article  CAS  PubMed  Google Scholar 

  17. Su L, Cui X, He T, Zeng L, Tian H, Song Y, Qi K, Xia BY (2019) Surface reconstruction of cobalt phosphide nanosheets by electrochemical activation for enhanced hydrogen evolution in alkaline solution. Chem Sci 10:2019–2024

    Article  CAS  PubMed  Google Scholar 

  18. Sumboja A, An T, Goh HY, Lubke M, Howard DP, Xu Y, Handoko AD, Zong Y, Liu Z (2018) One-step facile synthesis of cobalt phosphides for hydrogen evolution reaction catalysts in acidic and alkaline medium. ACS Appl Mater Interfaces 10:15673–15680

    Article  CAS  PubMed  Google Scholar 

  19. Wang X, Tong R, Wang Y, Tao H, Zhang Z, Wang H (2016) Surface roughening of nickel cobalt phosphide nanowire arrays/Ni Foam for enhanced hydrogen evolution activity. ACS Appl Mater Interfaces 8:34270–34279

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Z, Shi X, Yang X (2016) Synthesis of core-shell NiSe/C nanospheres as anodes for lithium and sodium storage. Electrochim Acta 208:238–243

    Article  CAS  Google Scholar 

  21. Ge R, Huo J, Liao T, Liu Y, Zhu M, Li Y, Zhang J, Li W (2020) Hierarchical molybdenum phosphide coupled with carbon as a whole pH-range electrocatalyst for hydrogen evolution reaction. Appl Catal B 260:118196

    Article  CAS  Google Scholar 

  22. Liu T, Li P, Yao N, Cheng G, Chen S, Luo W, Yin Y (2019) CoP-doped MOF-based electrocatalyst for pH-universal hydrogen evolution reaction. Angew Chem Int Ed 58:4679–4684

    Article  CAS  Google Scholar 

  23. Guan C, Xiao W, Wu H, Liu X, Zang W, Zhang H, Ding J, Feng YP, Pennycook SJ, Wang J (2018) Hollow Mo-doped CoP nanoarrays for efficient overall water splitting. Nano Energy 48:73–80

    Article  CAS  Google Scholar 

  24. Tang C, Zhang R, Lu W, He L, Jiang X, Asiri AM, Sun X (2017) Fe-doped CoP nanoarray: a monolithic multifunctional catalyst for highly efficient hydrogen generation. Adv Mater 29:1602441

    Article  CAS  Google Scholar 

  25. Wang H, Wang Y, Zhang J, Liu X, Tao S (2021) Electronic structure engineering through Fe-doping CoP enables hydrogen evolution coupled with electro-fenton. Nano Energy 84:105943

    Article  CAS  Google Scholar 

  26. Wen S, Chen G, Chen W, Li M, Ouyang B, Wang X, Chen D, Gong T, Zhang X, Huang J, Ostrikov K (2021) Nb-doped layered FeNi phosphide nanosheets for highly efficient overall water splitting under high current densities. J Mater Chem A 9:9918–9926

    Article  CAS  Google Scholar 

  27. Gao W, Yan M, Cheung H-Y, Xia Z, Zhou X, Qin Y, Wong C-Y, Ho JC, Chang C-R, Qu Y (2017) Modulating electronic structure of CoP electrocatalysts towards enhanced hydrogen evolution by Ce chemical doping in both acidic and basic media. Nano Energy 38:290–296

    Article  CAS  Google Scholar 

  28. Guo Y, Park T, Yi JW, Henzie J, Kim J, Wang Z, Jiang B, Bando Y, Sugahara Y, Tang J, Yamauchi Y (2019) Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv Mater 31:1807134

    Article  CAS  Google Scholar 

  29. Xiao X, Huang D, Fu Y, Wen M, Jiang X, Lv X, Li M, Gao L, Liu S, Wang M, Zhao C, Shen Y (2018) Engineering NiS/Ni2P heterostructures for efficient electrocatalytic water splitting. ACS Appl Mater Interfaces 10:4689–4696

    Article  CAS  PubMed  Google Scholar 

  30. Zeng L, Sun K, Wang X, Liu Y, Pan Y, Liu Z, Cao D, Song Y, Liu S, Liu C (2018) Three-dimensional-networked Ni2P/Ni3S2 heteronanoflake arrays for highly enhanced electrochemical overall-water-splitting activity. Nano Energy 51:26–36

    Article  CAS  Google Scholar 

  31. Wang Z, Wang S, Ma L, Guo Y, Sun J, Zhang N, Jiang R (2021) Water-induced formation of Ni2P-Ni12P5 interfaces with superior electrocatalytic activity toward hydrogen Evolution Reaction. Small 17:2006770

    Article  CAS  Google Scholar 

  32. Boppella R, Tan J, Yang W, Moon J (2018) Homologous CoP/NiCoP heterostructure on N-doped carbon for highly efficient and pH-universal hydrogen evolution electrocatalysis. Adv Func Mater 29:1807976

    Article  CAS  Google Scholar 

  33. Yan Y, Lin J, Bao K, Xu T, Qi J, Cao J, Zhong Z, Fei W, Feng J (2019) Free-standing porous Ni2P-Ni5P4 heterostructured arrays for efficient electrocatalytic water splitting. J Colloid Interface Sci 552:332–336

    Article  CAS  PubMed  Google Scholar 

  34. Yu X, Yu ZY, Zhang XL, Zheng YR, Duan Y, Gao Q, Wu R, Sun B, Gao MR, Wang G, Yu SH (2019) “Superaerophobic” nickel phosphide nanoarray catalyst for efficient hydrogen evolution at ultrahigh current densities. J Am Chem Soc 141:7537–7543

    Article  CAS  PubMed  Google Scholar 

  35. Tang C, Zhang R, Lu W, Wang Z, Liu D, Hao S, Du G, Asiri AM, Sun X (2017) Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew Chem Int Ed 56:842–846

    Article  CAS  Google Scholar 

  36. Wang X, Kolen’ko YV, Bao XQ, Kovnir K, Liu L (2015) One-step synthesis of self-supported nickel phosphide nanosheet array cathodes for efficient electrocatalytic hydrogen generation. Angew Chem Int Ed 54:8188–8192

    Article  CAS  Google Scholar 

  37. Wang C, Yang H, Zhang Y, Wang Q (2019) NiFe alloy nanoparticles with hcp crystal structure stimulate superior oxygen evolution reaction electrocatalytic activity. Angew Chem Int Ed 58:6099–6103

    Article  CAS  Google Scholar 

  38. Men Y, Li P, Zhou J, Cheng G, Chen S, Luo W (2019) Tailoring the electronic structure of Co2P by N doping for boosting hydrogen evolution reaction at all pH values. ACS Catal 9:3744–3752

    Article  CAS  Google Scholar 

  39. Gu Y, Wu A, Jiao Y, Zheng H, Wang X, Xie Y, Wang L, Tian C, Fu H (2021) Two-dimensional porous molybdenum phosphide/nitride heterojunction nanosheets for pH-universal hydrogen evolution reaction. Angew Chem Int Ed 60:6673–6681

    Article  CAS  Google Scholar 

  40. Li D, Zhou C, Yang R, Xing Y, Xu S, Jiang D, Tian D, Shi W (2021) Interfacial engineering of the CoxP-Fe2P heterostructure for efficient and robust electrochemical overall water splitting. ACS Sustain Chem Eng 9:7737–7748

    Article  CAS  Google Scholar 

  41. Liu C, Gong T, Zhang J, Zheng X, Mao J, Liu H, Li Y, Hao Q (2020) Engineering Ni2P-NiSe2 heterostructure interface for highly efficient alkaline hydrogen evolution. Appl Catal B 262:118245

    Article  CAS  Google Scholar 

  42. Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296–7299

    Article  CAS  PubMed  Google Scholar 

  43. Wang L, Wu H, Xi S, Chua ST, Wang F, Pennycook SJ, Yu ZG, Du Y, Xue J (2019) Nitrogen-doped cobalt phosphide for enhanced hydrogen evolution activity. ACS Appl Mater Interfaces 11:17359–17367

    Article  CAS  PubMed  Google Scholar 

  44. Huang Z, Chen Z, Chen Z, Lv C, Humphrey MG, Zhang C (2014) Cobalt phosphide nanorods as an efficient electrocatalyst for the hydrogen evolution reaction. Nano Energy 9:373–382

    Article  CAS  Google Scholar 

  45. Zhang X, Yu X, Zhang L, Zhou F, Liang Y, Wang R (2018) Molybdenum phosphide/carbon nanotube hybrids as pH-universal electrocatalysts for hydrogen evolution reaction. Adv Func Mater 28:1706523

    Article  CAS  Google Scholar 

  46. Pan Y, Sun K, Liu S, Cao X, Wu K, Cheong WC, Chen Z, Wang Y, Li Y, Liu Y, Wang D, Peng Q, Chen C, Li Y (2018) Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J Am Chem Soc 140:2610–2618

    Article  CAS  PubMed  Google Scholar 

  47. Xu Q, Gao W, Wang M, Yuan G, Ren X, Zhao R, Zhao S, Wang Q (2020) Electrodeposition of NiS/Ni2P nanoparticles embedded in amorphous Ni(OH)2 nanosheets as an efficient and durable dual-functional electrocatalyst for overall water splitting. Int J Hydrogen Energy 45:2546–2556

    Article  CAS  Google Scholar 

  48. Huang M, Ge K, Dong G, Zhou Z, Zeng Y (2019) 3-Dimensional flower-like clusters of CoNiP nanofoils in-situ grown on randomly-dispersed rGO-Nanosheets with superior electrocatalysis for hydrogen evolution reactions. Int J Hydrogen Energy 44:13195–13204

    Article  CAS  Google Scholar 

  49. Liang LL, Song G, Liu Z, Chen JP, Xie LJ, Jia H, Kong QQ, Sun GH, Chen CM (2020) Constructing Ni12P5/Ni2P heterostructures to boost interfacial polarization for enhanced microwave absorption performance. ACS Appl Mater Interfaces 12:52208–52220

    Article  CAS  PubMed  Google Scholar 

  50. Tian FY, Hou D, Zhang WM, Qiao XQ, Li DS (2017) Synthesis of a Ni2P/Ni12P5 bi-phase nanocomposite for the efficient catalytic reduction of 4-nitrophenol based on the unique n-n heterojunction effects. Dalton Trans 46:14107–14113

    Article  CAS  PubMed  Google Scholar 

  51. Wang Y, Wang B, Chu W, Kong Y, Wu Q, Liu Z (2020) Engineering NiCoP/MoxC heterojunction for highly efficient hydrogen evolution reaction in alkaline and acid solution. Int J Hydrogen Energy 45:28774–28782

    Article  CAS  Google Scholar 

  52. Chen Z, Liu X, Xin P, Wang H, Wu Y, Gao C, He Q, Jiang Y, Hu Z, Huang S (2021) Interface engineering of NiS@MoS2 core-shell microspheres as an efficient catalyst for hydrogen evolution reaction in both acidic and alkaline medium. J Alloy Compd 853:157352

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 21865032) and the Outstanding Graduate Student “the Star of Innovation” Project of Gansu Province (No. 2021CXZX-285).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanxia Wu or Qingtao Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 759 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Chen, X., Su, L. et al. Three-dimensional self-supporting Ni2P-Ni12P5/NF heterostructure as an efficient electrocatalyst to enhance hydrogen evolution reaction. Ionics 28, 3935–3944 (2022). https://doi.org/10.1007/s11581-022-04631-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04631-2

Keywords

Navigation