Skip to main content
Log in

Electrochromism in CuWO4 and WO3 thin films synthesized by combined electrochemical and chemical methods

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

This paper presents a comparative analysis of electrochromic properties of nonstoichiometric hydrated films CuWO3.7·2H2O, WO2.5·2H2O, and α-WO2.9·H2O obtained by combined electrochemical and chemical methods. The use of EDAX X-ray diffraction and UV VIS spectroscopy and the Smacula-Dexter equation helped to determine that of differences in spectral and electrochemical characteristics CuWO3.7·2H2O, WO2.5·2H2O, and α-WO2.9·H2O electrochromic process as results chemical composition, stoichiometry, and the structure films based on W oxide compounds, where the contribution to the electrochromic film coloration is mainly done using localized states of W5+, W4+, and additionally Cu+ in the case of CuWO3.7·2H2O. This allows CuWO3.7·2H2O extending light absorption at the electrochromic coloration in the 450–650 nm visible region spectrum. At the same time, diffusion processes are slowed down due to the complementary electrochromic coloration of copper oxide compounds, which reduces the rate and efficiency CuWO3.7·2H2O film compared to WO2.5·2H2O and α-WO2.9·H2O. This helped to establish that the metal tungstates can be effective electrochromic material as is WO3 with an additional absorption band provided that the dimensionally diffusion rates of protons or lithium ions in both oxide components are achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li HZ, Firby CJ, Elezzabi AY (2019) Rechargeable aqueous hybrid Zn2+/Al3+ electrochromic batteries. Joule 3:2268–2278

    Article  CAS  Google Scholar 

  2. Li HZ, McRae L, Firby CJ, Elezzabi AY (2019) Recharge able aqueous electrochromic batteries utilizing Ti-substituted tungsten molybdenum oxide based Zn2+ ion intercalation cathodes. Adv Mater 31:1807065–1807210

    Article  CAS  Google Scholar 

  3. Zhang SL, Cao S, Zhang TR (2020) Overcoming the technical challenges in Al anode-based electrochromic energy storage windows. Small Methods 4:1900545–1900706

    Article  CAS  Google Scholar 

  4. Ma D, Shi G, Wang H, Zhang Q, Li Y (2014) Controllable growth of high-quality metal oxide/conducting polymer hierarchical nanoarrays with outstanding electrochromic properties and solar-heat shielding ability. J Mater Chem A 2:13541–13549

    Article  CAS  Google Scholar 

  5. Lee SJ, Choi DS, Kang SH, Yang WS, Nahm S, Han SH, Kim T (2019) VO2/WO3-based hybrid smart windows with thermochromic and electrochromic properties. ACS Sustain Chem Eng 7:7111–7117

    Article  CAS  Google Scholar 

  6. Faughnan BW, Crandall RS, Heyman PM (1975) Model for the bleaching of WO3 electrochromic films by an electric field. Appl Phys Lett 27:275–277

    Article  CAS  Google Scholar 

  7. Bechinger C, Burdis MS, Zhang J-G (1999) Electrochromic coloration efficiency of a-WO3-y thin films as a function of oxygen deficiency. Appl Phys Lett 75:1541–1543

    Article  Google Scholar 

  8. Yoshimura T (1985) Oscillator strength of small-polaron absorption in WOx (x≤3) electrochromic thin films. J Appl Phys 57:911–919

    Article  CAS  Google Scholar 

  9. Johansson M, Zietz B, Niklasson G, Österlund L (2014) Optical properties of nanocrystalline WO3 and WO3-x thin films prepared by DC magnetron Sputtering. J Appl Phys 115:213510–213526

    Article  CAS  Google Scholar 

  10. Bechinger C, Burdis MS, Zhang J-G (1997) Comparison between electrochromic and photochromic coloration efficiency of tungsten oxide thin films. Solid State Commun 101:753–756

    Article  CAS  Google Scholar 

  11. Iguchi E, Miyagi H (1993) A study on the stability of polarons in monoclinic WO3. J Phys Chem Solids 54:403–409

    Article  CAS  Google Scholar 

  12. Berggren L, Azens A, Niklasson GA (2001) Polaron absorption in amorphous tungsten oxide films. J Appl Phys 90:1860–1863

    Article  CAS  Google Scholar 

  13. Saenger MF, Höing T, Hofmann T, Schubert M (2008) Polaron transitions in charge intercalated amorphous tungsten oxide thin films. Phys Status Solidi A 4:914–917

    Article  CAS  Google Scholar 

  14. Ozkana E, Leea S-H, Tracy CE, Pittsa JR, Deb SK (2003) Comparison of electrochromic amorphous and crystalline tungsten oxide films. Sol Energy Mater Sol Cells 79:439–448

    Article  CAS  Google Scholar 

  15. Miyake K, Kaneko H, Sano M, Suedomi N (1984) Physical and electrochromic properties of the amorphous and crystalline tungsten oxide thick films prepared under reducing atmosphere. J Appl Phys 55:2747–2753

    Article  CAS  Google Scholar 

  16. Antonaia A, Addonizio ML, Minarini C, Polichetti T, Vittori-Antisari M (2001) Improvement in electrochromic response for an amorphous: crystalline WO3 double layer. Electrochim Acta 46:2221–2227

    Article  CAS  Google Scholar 

  17. Sun SS, Holloway PR (1984) Modification of the electrochromic response of WO3 thin films by oxygen backfilling. J Vac Sci A 2:336–340

    Article  CAS  Google Scholar 

  18. Bondarenko N, Eriksson O, Skorodumova NV (2015) Polaron mobility in oxygen-deficient and lithium-doped tungsten trioxide. Phys Rev B 92:165119–165127

    Article  CAS  Google Scholar 

  19. Wang Z, Gong W, Wang X, Chen Z, Chen X, Chen J, Sun H, Song G, Cong S, Geng F, Zhao Z (2020) Remarkable near-infrared electrochromism in tungsten oxide driven by interlayer water-induced battery-to-pseudocapacitor transition. ACS Appl Mater Interfaces 12:33917–43392

    Article  CAS  PubMed  Google Scholar 

  20. Nayak AK, Verma M, Sohn Y, Deshpande PA, Pradhan D (2017) Highly active tungsten oxide nanoplate electrocatalysts for the hydrogen evolution reaction in acidic and near neutral electrolytes. ACS Omega 2:7039–7047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thongpan W, Louloudakis D, Pooseekheaw P, Kumpika T, Kantarak E, Sroila W, Panthawan A, Thongsuwan W, Singjai P (2019) Porous CuWO4/WO3 composite films with improved electrochromic properties prepared by sparking method. Mater Lett 257:126747–126760

    Article  CAS  Google Scholar 

  22. Yuan C, Lin H, Lu H, Xing E, Xie ZY, B, (2015) Anodic deposition and capacitive property of nano-WO3·H2O/MnO2 composite as supercapacitor electrode material. Mater Lett 148:167–170

    Article  CAS  Google Scholar 

  23. Nishiyamaa K, Matsuo R, Sasano J, Yokoyama S, Izaki M (2017) Solid state tungsten oxide hydrate/tin oxide hydrate electrochromic device prepared by electrochemical reactions. AIP Adv 7:035004

    Article  CAS  Google Scholar 

  24. Santos L, Neto JP, Crespo A, Baião P, Barquinha P, Pereira L, Martins R, Fortunato E (2015) Electrodeposition of WO3 nanoparticles for sensing applications. In: Aliofkhazraei M (ed) Electroplating of Nanostructures, IntechOpen, London, https://doi.org/10.5772/61216

  25. Mineo G, Ruffino F, Mirabella S, Bruno E (2020) Investigation of WO3 electrodeposition leading to nanostructured. Thin Films Nanomater 10(8):1493–1505

    CAS  Google Scholar 

  26. Esmail A, Hashem H, Soltan S, Hammam M, Ramadan A (2016) Thickness dependence of electro-optical properties of WO3 films as an electrochromic functional material for energy-efficient applications. Phys Status Solidi A 214:1–9

    Google Scholar 

  27. Khanapuram U, Bhat SD, Aryasomayajula S (2019) Electrochromic device with magnetron sputtered tungsten oxide (WO3) and nafion membrane: performance with varying tungsten oxide thickness- a report. Mater Res Express 6:045513

    Article  CAS  Google Scholar 

  28. Krasnov YS, Volkov SV, Kolbasov GY (2006) Optical and kinetic properties of cathodically deposited amorphous tungsten oxide films. J Non-Cryst Solids 352:3995–4002

    Article  CAS  Google Scholar 

  29. Fomanyuk SS, Krasnov YuS, Kolbasov GYa, (2013) Kinetics of electrochromic process in thin films of cathodically deposited nickel hydroxide. J Solid State Electrochem 17:2643–2649

    Article  CAS  Google Scholar 

  30. Lerner LS (1997) Physics for scientists and engineers. Jones & Bartlett Publishers Inc., Boston

    Google Scholar 

  31. Hssi A, Atourki L, Labchir N, Ouafi M, Abouabassi K, Elfanaoui A, Ihlal A, Bouabid K (2020) Optical and dielectric properties of electrochemically deposited p-Cu2O films. Mater Res Express 7:16424

    Article  CAS  Google Scholar 

  32. Wilson S. (2015) Zn-VI/Cu2O heterojunctions for earth-abundant photovoltaics dissertation, California Institute of Technology

  33. Yagi S (2011) Potential-pH diagrams for oxidation-state control of nanoparticles synthesized via chemical reduction. In: Moreno-Piraján JC (ed) Thermodynamics - Physical Chemistry of Aqueous Systems, IntechOpen, London, https://doi.org/10.5772/21548.

  34. Rezaie HR, Hashempour M, Razavizadeh H, Mehrjoo H, Salehi MT, Ardestani M (2010) Investigation on fabrication of W-Cu nanocomposite via a thermochemical co-precipitation method and its consolidation behavior. J Nano Res 11:57–66

    Article  CAS  Google Scholar 

  35. Li Y, Wang N, Xu J, Liu Z, Yu H (2019) Significant effect of advanced catalysts Co3S4 modified CuWO4·2H2O under visible light condition photocatalytic hydrogen production. J Nanopart Res 21:80

    Article  CAS  Google Scholar 

  36. Kavitha B, Karthiga R (2020) Synthesis and characterization of CuWO4 as nano-adsorbent for removal of Nile blue and its antimicrobial studies. J Mater Environ Sci 11:57–68

    CAS  Google Scholar 

  37. Liang L, Zhang J, Zhou Y, Xie J, Zhang X, Guan M, Pan B, Xie Y (2013) High-performance flexible electrochromic device based on facile semiconductor-to-metal transition realized by WO3·2H2O ultrathin nanosheets. Sci Rep 3:1936

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gao X, Yang C, Xiao F, Zhu Y, Wang J, Su X (2012) WO3·0.33H2O nanoplates: Hydrothermal synthesis, photocatalytic and gas-sensing properties. Mater Lett 84:151–153

    Article  CAS  Google Scholar 

  39. Kadam AV, Patil SB (2018) Polyaniline globules as a catalyst for WO3 nanoparticles for supercapacitor application. Mater Res Express 5:085036

    Article  CAS  Google Scholar 

  40. Naik SJ, Salker AV (2010) Solid state studies on cobalt and copper tungstates nano materials. Solid State Sci 12:2065–2072

    Article  CAS  Google Scholar 

  41. Momeni MM, Ghayeb Y, Menati M (2019) Highly efficient and photostable photocathodes based on CuWO4/Cu2O nanostructured thin films. J Iran Chem Soc 17:1–14

    Google Scholar 

  42. Jin P, Wei D, Wen Y, Luo M, Wang X, Tang M (2011) A combined experimental and DFT study of active structures and self-cycle mechanisms of mononuclear tungsten peroxo complexes in oxidation reactions. J Mol Struct 992:19–26

    Article  CAS  Google Scholar 

  43. Markham AE, Kobe KA (1941) The solubility of carbon dioxide in aqueous solutions of sulfuric and perchloric acids at 25. J Am Chem Soc 63:1165–1166

    Article  CAS  Google Scholar 

  44. Dolson D, Battino R, Letcher T, Pegel K, Revaprasadu N (1995) Carbohydrate dehydration demonstrations. J Chem Educ 72:927–929

    Article  CAS  Google Scholar 

  45. Kumar VB, Mohanta D (2011) Formation of nanoscale tungsten oxide structures and colouration characteristics. Bull Mater Sci 34:435–442

    Article  CAS  Google Scholar 

  46. Boruah PJ, Khanikar RR, Bailung H (2020) Synthesis and characterization of oxygen vacancy induced narrow bandgap tungsten oxide (WO3−x) nanoparticles by plasma discharge in liquid and its photocatalytic activity, plasma chemistry and plasma processing 3:1−18.

  47. Uppachai P, Harnchana V, Pimanpang S, Amornkitbamrung V, Brown AP, Brydson RMD (2014) A substoichiometric tungsten oxide catalyst provides a sustainable and efficient counter electrode for dye-sensitized solar cells. J Electrochim Acta 145:27–33

    Article  CAS  Google Scholar 

  48. Sawant SS, Bhagwat AD, Mahajan CM (2016) Synthesis of cuprous oxide (Cu2O) nanoparticles – a review. J Nano- Electron Phys 8:1–5

    Google Scholar 

  49. Chen K, Song S, Xue D (2015) Faceted Cu2O structures with enhancing Li-ion battery anode performances. Cryst Eng Comm 17:2110–2117

    Article  CAS  Google Scholar 

  50. Darmawi S, Burkhardt S, Leichtweiss T, Weber DA, Wenzel S, Janek J, Elm MT, Klar PJ (2015) Correlation of electrochromic properties and oxidation states in nanocrystalline tungsten trioxide. Phys Chem Chem Phys 17:15903–15911

    Article  CAS  PubMed  Google Scholar 

  51. Dexter DL (1956) Absorption of light by atoms in solids. Phys Rev 101:48–55

    Article  CAS  Google Scholar 

  52. Velevska J, Stojanov N, Pecovska-Gjorgjevich M, Najdoski M (2017) Electrochromism in tungsten oxide thin films prepared by chemical bath deposition. J Electrochem Sci Eng 7:27–37

    Article  CAS  Google Scholar 

  53. Zimmer A, Gilliot M, Tresse M et al (2019) Coloration mechanism of electrochromic NaxWO3 thin films. Opt Lett 44:1104–1107

    Article  CAS  PubMed  Google Scholar 

  54. Somani PR, Radhakrishnan S (2002) Electrochromic materials and devices: present and future. Mater Chem Phys 77:117–133

    Article  Google Scholar 

  55. Smela E (1999) A microfabricated movable electrochromic pixel based on polypyrrole. Adv Mater 11:1343–1345

    Article  CAS  Google Scholar 

  56. Krasnov YS, Kolbasov GY (2004) Electrochromism and reversible changes in the position of fundamental absorption edge in cathodically deposited amorphous WO3. Electrochim Acta 49:2425–2433

    Article  CAS  Google Scholar 

  57. Kondaiah P, Hussain O, Uthanna S (2012) Structural, optical, and luminescence properties of reactive magnetron sputtered tungsten oxide thin films. ISRN Optics. https://doi.org/10.5402/2012/801468

    Article  Google Scholar 

  58. Gavrilyuk AI, Gusinskii GM, Lanskaya TG (1994) Determination of oscillator strength of an optical transition for color centers in WO3 thin films. Tech Phys Lett 20:295–297

    Google Scholar 

  59. Nakamura K, Moriga T, Sumi A, Kashu Y, Michihiro Y, Nakabayashi I, Kanashiroa T (2005) NMR study on the Li+ ion diffusion in LiCuO2 with layered structure. Solid State Ionics 176:837–840

    Article  CAS  Google Scholar 

  60. Azam A, Kim J, Park J, Novak TG, Tiwari AP, Song SH, Kim B, Jeon S (2018) Two-dimensional WO3 nanosheets chemically converted from layered WS2 for high-performance electrochromic devices. Nano Lett 18:5646–5651

    Article  CAS  PubMed  Google Scholar 

  61. Randin J-P (1982) Viennet R Proton diffusion in tungsten trioxide thin films. J Electrochem Soc 129:2349–2354

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Fomanyuk.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 51.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smilyk, V.O., Fomanyuk, S.S., Rusetskyi, I.A. et al. Electrochromism in CuWO4 and WO3 thin films synthesized by combined electrochemical and chemical methods. Ionics 28, 4011–4023 (2022). https://doi.org/10.1007/s11581-022-04607-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04607-2

Keywords

Navigation