Skip to main content
Log in

Battery design toward fast charging technology: a parametric survey

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Battery design has important effects on its fast-charging performance. This research took a prismatic NMC lithium-ion cell as the object, and built its finite element model based on the electrochemical and thermal theories. The voltages during the 1C, 3C, and 6C charging processes were obtained and compared with the experiment results, which verified the effectiveness of the model. By changing the structure parameters and material parameters of the cell, their influence on the fast-charging capability of the cell was systematically investigated. The structure parameters included the active layer thickness, cell balance, and separator thickness. The material parameters included the particle radii in the positive electrode and negative electrode, the porosities of the positive active layer, negative active layer, and separator. It was found that most of them would influence the fast-charging capability of the cell distinctly, except for the cell balance. Compared with others, the porosities of the positive active layer, negative active layer, and separator had the most significant influence on the fast-charging capability of the cell. And the smaller the porosities were, the greater the influence was. The conclusions obtained could provide references for the structure design and material design of lithium-ion batteries toward fast-charging technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Zeng XQ, Li M, Abd El-Hady D, Alshitari W, Al-Bogami AS, Lu J, Amine K (2019) Commercialization of lithium battery technologies for electric vehicles. Energy Mater 9:1900161

    Article  CAS  Google Scholar 

  2. Zhu GL, Zhao CZ, Huang JQ, He CX, Zhang J, Chen SH, Xu L, Yuan H, Zhang Q (2019) Fast-charging lithium batteries: recent progress and future prospects. Small 15:1805389

    Article  CAS  Google Scholar 

  3. Zou CN, He DB, Jia CY, Xiong BQ, Zhao Q, Pan SQ (2021) Connotation and pathway of world energy transition and its significance for carbon neutral. Acta Petrolei Sinica 42(2):233–247

    Google Scholar 

  4. Liu CH, Gao Y, Liu L (2021) Toward safe and rapid battery charging: design optimal fast charging strategies thorough a physics-based model considering lithium plating. Int J Energy Res 45(2):2303–2320

    Article  Google Scholar 

  5. Liu CH, Liu L (2017) Optimizing battery design for fast charge through a genetic algorithm based multi-objective optimization framework. ECS Trans 77:257–271

    Article  CAS  Google Scholar 

  6. Liu KL, Zou CF, Li K, Wik T (2018) Charging pattern optimization for lithium-ion batteries with an electrothermal aging model. IEEE Trans Industr Inf 14(12):5463–5474

    Article  Google Scholar 

  7. Perez HE, Hu XS, Dey S, Moura SJ (2017) Optimal charging of li-ion batteries with coupled electro-thermal-aging dynamics. IEEE Trans Veh Technol 66(9):7761–7770

    Article  Google Scholar 

  8. Hovestadt L, Lux S, Koellner N, Schloesser A, Hanke-Rauschenbach R (2021) Model based investigation of lithium deposition including an optimization of fast charging lithium ion cells. J Electrochem Soc 168:050538

    Article  CAS  Google Scholar 

  9. Vikrant KSN, Allu S (2021) Modeling of lithium nucleation and plating kinetics under fast charge conditions. J Electrochem Soc 168:020536

    Article  CAS  Google Scholar 

  10. Liu L, Zhu M (2014) Modeling of SEI layer growth and electrochemical impedance spectroscopy response using a thermal-electrochemical model of Li-ion batteries. ECS Trans 61(27):43–61

    Article  CAS  Google Scholar 

  11. Liu L, Guan PJ (2019) Phase-field modeling of solid electrolyte interphase (SEI) evolution: considering cracking and dissolution during battery cycling. ECS Trans 89(1–2):101–111

    Article  CAS  Google Scholar 

  12. Mu WY, Liu XL, Wen Z, Liu L (2019) Numerical simulation of the factors affecting the growth of lithium dendrites. J Energy Storage 26:100921

    Article  Google Scholar 

  13. Liu SH, Liu XL, Dou RF, Zhou WN, Wen Z, Liu L (2020) Experimental and simulation study on thermal characteristics of 18,650 lithium-iron-phosphate battery with and without spot-welding tabs. Appl Therm Eng 166:114648

    Article  CAS  Google Scholar 

  14. O’Malley R, Liu L, Depcik C (2018) Comparative study of various cathodes for lithium ion batteries using an enhanced Peukert capacity model. J Power Sources 396:621–631

    Article  CAS  Google Scholar 

  15. Heubner C, Nickol A, Seeba J, Reuber S, Junker N, Wolter M, Schneider M, Michaelis A (2019) Understanding thickness and porosity effects on the electrochemical performance of LiNi0.6Co0.2Mn0.2O2-based cathodes for high energy Li-ion batteries. J Power Sources 419:119–126

    Article  CAS  Google Scholar 

  16. Wu MX, Zhang QL, Yang CY, Chen S, Zhou YR (2019) Effects of different separators on the performance of fast-charging NCM lithium-ion batteries. Electron Components Mater 38(5):57–62

    Google Scholar 

  17. Colclasure AM, Tanim TR, Jansen AN, Trask SE, Dunlop AR, Polzin BJ, Bloom I, Robertson D, Flores L, Evans M, Dufek EJ, Smith K (2020) Electrode scale and electrolyte transport effects on extreme fast charging of lithium-ion cells. Electrochim Acta 337:135854

    Article  CAS  Google Scholar 

  18. Patel P, Nelson GJ (2020) The influence of structure on the electrochemical and thermal response of li-ion battery electrodes. J Energy Res Technol 142(5):050906

    Article  CAS  Google Scholar 

  19. Lee SM, Kim J, Moon J, Jung KN, Kim JH, Park GJ, Choi JH, Rhee DY, Kim JS, Lee JW, Park MS (2021) A cooperative biphasic MoOx-MoPx promoter enables a fast-charging lithium-ion battery. Nat Commun 12(1):39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jiang K, Liu XL, Lou GF, Wen Z, Liu L (2020) Parameter sensitivity analysis and cathode structure optimization of a non-aqueous Li-O-2 battery model. J Power Sources 451:227821

    Article  CAS  Google Scholar 

  21. Song G, Choi S, Hwang C, Ryu J, Song WJ, Song HK, Park S (2020) Rational structure design of fast-charging NiSb bimetal nanosheet anode for lithium ion batteries. Energy Fuels 34(8):10211–10217

    Article  CAS  Google Scholar 

  22. Kim J, Jeghan SMN, Lee G (2020) Superior fast-charging capability of graphite anode via facile surface treatment for lithium-ion batteries. Microporous Mesoporous Mater 305:110325

    Article  CAS  Google Scholar 

  23. Shen XJ, Sun T, Yang L, Krasnoslobodtsev A, Sabirianov R, Sealy M, Mei WN, Wu ZJ, Tan L (2021) Ultra-fast-charging in aluminum-ion batteries: electric double layers on active anode. Nat Commun 12(1):820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen ZY, Zhang B, Xiong R, Shen WX, Yu QQ (2021) Electro-thermal coupling model of lithium-ion batteries under external short circuit. Appl Energy 293:116910

    Article  Google Scholar 

  25. Li JC, Dozier AK, Li YC, Yang FQ, Cheng YT (2011) Crack pattern formation in thin film lithium-ion battery electrodes. J Electrochem Soc 158(6):A689–A694

    Article  CAS  Google Scholar 

  26. Kim CS, Jeong KM, Kim K, Yi CW (2015) Effects of capacity ratios between anode and cathode on electrochemical properties for lithium polymer batteries. Electrochim Acta 155:431–436

    Article  CAS  Google Scholar 

  27. Shi DH, Xiao XR, Huang XS, Kia H (2011) Modeling stresses in the separator of a pouch lithium-ion cell. J Power Sources 196(19):8129–8139

    Article  CAS  Google Scholar 

  28. Li QF, Wang YN, Li H, Lian C, Wang ZK (2021) Stress and its influencing factors in positive particles of lithium-ion battery during charging. Int J Energy Res 45(3):3913–3928

    Article  CAS  Google Scholar 

  29. Ely DR, Garcia RE (2013) Heterogeneous nucleation and growth of lithium electrodeposits on negative electrodes. J Electrochem Soc 160(4):A662–A668

    Article  CAS  Google Scholar 

  30. Zhang JZ, Zhang J, Wang D, Xie XH, Xia BJ (2017) Stress evolution in SiO electrodes for lithium-ion batteries during electrochemical cycling. Mater Lett 190:79–82

    Article  CAS  Google Scholar 

  31. Wu XR, Yu CH, Li CC (2020) Carbon-encapsulated gigaporous microsphere as potential Si anode-active material for lithium-ion batteries. Carbon 160:255–264

    Article  CAS  Google Scholar 

  32. Jung YS, Cavanagh AS, Gedvilas L, Widjonarko NE, Scott ID, Lee SH, Kim GH, George SM, Dillon AC (2012) Improved functionality of lithium-ion batteries enabled by atomic layer deposition on the porous microstructure of polymer separators and coating electrodes. Adv Energy Mater 2(8):1022–1027

    Article  CAS  Google Scholar 

  33. Doyle M, Fuller TF, Newman J (1993) Modeling of galvanostatic charge and discharge of the lithium polymer insertion cell. J Electrochem Soc 140(6):1526–1533

    Article  CAS  Google Scholar 

  34. Newman JS, Tobias CW (1962) Theoretical analysis of current distribution in porous electrodes. J Electrochem Soc 109(12):1183–1191

    Article  CAS  Google Scholar 

  35. Chen Y, Huo WW, Lin MY, Zhao L (2018) Simulation of electrochemical behavior in Lithium ion battery during discharge process. PLoS ONE 13(1):e0189757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Mei WX, Chen HD, Sun JH, Wang QS (2018) Numerical study on tab dimension optimization of lithium-ion battery from the thermal safety perspective. Appl Therm Eng 142:148–165

    Article  Google Scholar 

  37. Pesaran A, Vlahinos A, Bharathan D (2019) Electrothermal analysis of lithium ion batteries. https://www.nrel.gov/transportation/assets/ pdfs/39503.pdf. Accessed 29 May 2019

  38. Kuang YD, Chen CJ, Kirsch D, Hu LB (2019) Thick electrode batteries: principles, opportunities, and challenges. Adv Energy Mater 9(33):1901457

    Article  CAS  Google Scholar 

  39. Nolle R, Beltrop K, Holtstiege F, Kasnatscheew J, Placke T, Winter M (2020) A reality check and tutorial on electrochemical characterization of battery cell materials: how to choose the appropriate cell setup. Mater Today 32:131–146

    Article  CAS  Google Scholar 

  40. Weiss M, Ruess R, Kasnatscheew J, Levartovsky Y, Levy NR, Minnmann P, Stolz L, Waldmann T, Wohlfahrt-Mehrens M, Aurbach D, Winter M, Ein-Eli Y, Janek J (2021) Fast-charging of lithium-ion batteries: a review of materials aspects. Adv Energy Mater 11(33):2101126

    Article  CAS  Google Scholar 

  41. Cheng XB, Zhang R, Zhao CZ, Zhang Q (2017) Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev 117(15):10403–10473

    Article  CAS  PubMed  Google Scholar 

  42. Heubner C, Langklotz U, Michaelis A (2018) Theoretical optimization of electrode design parameters of Si based anodes for lithium-ion batteries. J Energy Storage 15:181–190

    Article  Google Scholar 

  43. Primo EN, Chouchane M, Touzin M, Vazquez P, Franco AA (2021) Understanding the calendering processability of Li(Ni0.33Mn0.33Co (0.33))O-2-based cathodes. J Power Sources 488:229361

    Article  CAS  Google Scholar 

  44. Renganathan S, Sikha G, Santhanagopalan S, White RE (2010) Theoretical analysis of stresses in a lithium ion cell. J Electrochem Soc 157(2):A155–A163

    Article  CAS  Google Scholar 

  45. Lagadec MF, Zahn R, Wood V (2019) Characterization and performance evaluation of lithium-ion battery separators. Nat Energy 4(1):16–25

    Article  CAS  Google Scholar 

  46. Arora P, Zhang ZM (2004) Battery separators. Chem Rev 104(10):4419–4462

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by Shandong Provincial Natural Science Foundation, China (ZR2020ME138); Guangdong Basic and Applied Basic Research Foundation (2022A1515010240); National Key R&D Program of China (SQ2020YFF0416411); and Key R&D Program of Shandong Province (2019JZZY010914).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zongfa Xie or Yanan Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sang, C., Ni, R., Xie, Z. et al. Battery design toward fast charging technology: a parametric survey. Ionics 28, 3301–3320 (2022). https://doi.org/10.1007/s11581-022-04589-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04589-1

Keywords

Navigation