Skip to main content

Charging Optimization Methods for Lithium-Ion Batteries

  • Chapter
  • First Online:
Behaviour of Lithium-Ion Batteries in Electric Vehicles

Part of the book series: Green Energy and Technology ((GREEN))

  • 7884 Accesses

Abstract

Traditional charging technology uses external battery parameters, e.g., terminal voltage and current, as the control target, and only controlling external parameters does not give information on internal characteristics of the battery, and thus, the effects of different charging currents and cutoff voltages on battery degradation are not clear. In this chapter, the electrochemical reaction mechanisms and external characteristics of the battery during charging process are studied, and the mechanisms of battery charging performance and characteristics of charging polarization are revealed. By researching the electrochemical reaction law and potential distribution characteristics of the battery during the charging process, a novel electric model based on the Butler–Volmer equation was employed to outline the unique phenomena induced by changing rates for high-power lithium batteries. The robustness of the developed model under varying loading conditions, including galvanostatic test and Federal Urban Dynamic Schedule (FUDS) test, is evaluated and compared against experimental data. The analysis of polarization voltage features at different charging rates indicates that polarization voltage is high on both ends of the SOC range but low in the middle SOC range, and the shape of the polarization voltage curve is like a bowl. In the middle SOC range, an approximate linear relationship exists between the steady-state polarization voltage and the charging rate. The two time constants (TCs) representing polarization voltage change are in 10- and 1000-s orders of magnitude, respectively, which corresponds to three charging reaction processes. The dynamic polarization voltage exhibits a lagged effect and an overshoot effect when the charge current is changed. Depending on the polarization voltage characteristics, setting battery polarization voltage and charging cutoff voltage as the constraint conditions, the calculation method for the maximum charge current of a Li-ion battery based on the battery polarization time constant is established, which can help engineers design a practical charging strategy. An optimal charging strategy is devised to balance charging time and temperature rise, with polarization constraints fulfilled. The charging target function is constructed by setting limits to the charging temperature rise and shortening the charging time as the optimization target. The optimal charging current curve is determined by the genetic algorithm (GA) under the constraint of the maximum charge current and limited by polarization voltage. The experimental results indicate that the developed charging protocol can reduce charging time remarkably with reasonable temperature rise, highlighting its advantages over conventional CC–CV charging methods. Aging experiments further verify that the developed charging protocol has a similar capacity retention ratio, compared to that of 0.5C CC–CV charging after 700 cycles. By effectively combining the external characteristics and the internal electrochemical reaction during the charging process, the optimized charging strategy with polarization voltage as the control target results in a fast charging process without damage to the battery life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Seaman, T.-S. Dao, J. McPhee, J. Power Sources 256, 410 (2014)

    Article  Google Scholar 

  2. M. Einhorn, F.V. Conte, C. Kral, J. Fleig, IEEE Trans. Power Electr. 28, 1429 (2013)

    Article  Google Scholar 

  3. X. Hu, R. Xiong, E. Bo, IEEE Trans. Ind. Inform. 10, 1948 (2014)

    Article  Google Scholar 

  4. Z. Ma, J. Jiang, W. Shi, W. Zhang, C.C. Mi, J. Power Sources 274, 29 (2015)

    Article  Google Scholar 

  5. H. Rahimi-Eichi, U. Ojha, F. Baronti, M. Chow, IEEE Ind. Electron. M 7, 4 (2013)

    Article  Google Scholar 

  6. N.M.L. Tan, T. Abe, H. Akagi, IEEE Trans. Power Electr. 27, 1237 (2012)

    Article  Google Scholar 

  7. H. Lin, T. Liang, S. Chen, IEEE Trans. Ind. Electron. 9, 679 (2013)

    Google Scholar 

  8. M. Shahriari, M. Farrokhi, IEEE Trans. Ind. Electron 60, 191 (2013)

    Article  Google Scholar 

  9. T.T. Vo, X.P. Chen, W.X. Shen, A. Kapoor, J. Power Sources 271, 413 (2015)

    Article  Google Scholar 

  10. Z. Guo, B.Y. Liaw, X.P. Qiu, L. Gao, C.S. Zhang, J. Power Sources 274, 957 (2015)

    Article  Google Scholar 

  11. X.S. Hu, S. Li, H. Peng, F.C. Sun, J. Power Sources 239, 449 (2013)

    Article  Google Scholar 

  12. S. Zhang, C.N. Zhang, R. Xiong, W. Zhou, Energies 7, 6783 (2014)

    Article  Google Scholar 

  13. A.A. Hussein, A.A. Fardoun, S.S. Stephen, IEEE Trans. Sustain. Energy 7, 32 (2016)

    Article  Google Scholar 

  14. L. Ji, L. Guang, H.K. Fathy, J. Dyn. Syst. Meas. Control 138, 021009 (2016)

    Google Scholar 

  15. Y.H. Liu, C.H. Hsieh, Y.F. Luo, IEEE Trans. Energy Conver. 26, 654 (2011)

    Article  Google Scholar 

  16. Y.H. Liu, Y.F. Luo, IEEE Trans. Ind. Electron 57, 3963 (2010)

    Article  Google Scholar 

  17. D. Anseán, M. González, J.C. Viera et al., J. Power Sources 239, 9 (2013)

    Article  Google Scholar 

  18. N. Legrand, B. Knosp, P. Desprez et al., J. Power Sources 245, 208 (2014)

    Article  Google Scholar 

  19. L.R. Chen, S.L. Wu, D.T. Shieh et al., IEEE Trans. Ind. Electron. 60, 88 (2013)

    Article  Google Scholar 

  20. S.J. Huang, B.G. Huang, F.S. Pai, IEEE Trans. Power Electr. 28, 1555 (2013)

    Article  Google Scholar 

  21. J.Y. Yan, G.Q. Xu, H.H. Qian et al., Energies 4, 1178 (2011)

    Article  Google Scholar 

  22. P. Sourav, A. Sohel, J. Power Sources 313, 164 (2016)

    Article  Google Scholar 

  23. Abdollahi, X. Han, G.V. Avvari, N. Raghunathan et al., J. Power Sources 303, 388 (2016)

    Article  Google Scholar 

  24. J.C. Jiang, C.P. Zhang, J.P. Wen et al., IEEE Trans. Veh. Technol. 62, 3000 (2013)

    Article  Google Scholar 

  25. J.C. Jiang, Q.J. Liu, C.P. Zhang et al., IEEE Trans. Ind. Electron. 61, 6844 (2014)

    Article  Google Scholar 

  26. K.M. Kim, Y.G. Lee, K.Y. Kang et al., RSC Adv. 2, 3844 (2012)

    Article  Google Scholar 

  27. R. Xiong, F. Sun, Z. Chen, H. He, Appl. Energy 113, 463 (2014)

    Article  Google Scholar 

  28. F. Sun, R. Xiong, J. Power Sources 274, 582 (2015)

    Article  Google Scholar 

  29. F. Sun, R. Xiong, H. He, Appl. Energy 162, 1399 (2016)

    Article  Google Scholar 

  30. X.S. Hu, S.B. Li, H. Peng, J. Power Sources 198, 359 (2012)

    Article  Google Scholar 

  31. C.P. Zhang, L.Y. Wang, X. Li, W. Chen, G.G. Yin, J.C. Jiang, IEEE Trans. Ind. Electron. 62, 4948 (2015)

    Article  Google Scholar 

  32. M. Urbain, M. Hinaje, S. Rael, B. Davat, P. Desprez, IEEE Trans. Energy Conver. 25, 862 (2010)

    Article  Google Scholar 

  33. H.V.M. Hamelers, A.T. Heijne, N. Stein, R.A. Rozendal, C.J.N. Buisman, Bioresource Technol. 102, 381 (2011)

    Article  Google Scholar 

  34. R.F. Mann, J.C. Amphlett, B.A. Peppley, C.P. Thurgood, J. Power Sources 161, 775 (2006)

    Article  Google Scholar 

  35. E. Prada et al., J. Electrochem. Soc. 159, A1508 (2012)

    Article  Google Scholar 

  36. P. Rong, M. Pedram, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 14, 441 (2006)

    Article  Google Scholar 

  37. M. Greenleaf, H. Li, J.P. Zheng, IEEE Trans. Sustain. Energy 4, 1065 (2013)

    Article  Google Scholar 

  38. N. Watrin, R. Roche, H. Ostermann, B. Blunier, A. Miraoui, IEEE Trans. Veh. 61, 3420 (2012)

    Article  Google Scholar 

  39. X. Hu, F. Sun, Y. Zou, Simul. Model. Pract. Theory 34, 1 (2013)

    Article  Google Scholar 

  40. Blanco et al., IEEE Trans. Veh. Technol. 63, 3592 (2014)

    Article  Google Scholar 

  41. W.Y. Low, J.A. Aziz, N.R.N. Idris, R. Saidur, J. Power Sources 221, 201 (2013)

    Article  Google Scholar 

  42. L. Gao, S. Liu, R.A. Dougal, IEEE Trans. Compon. Packag. Technol. 25, 495 (2002)

    Article  Google Scholar 

  43. J. Zhang, S. Ci, H. Sharif, M. Alahmad, An enhanced circuit-based model for single-cell battery, in Proceedings of 25th Annual IEEE APEC (2010), p. 672

    Google Scholar 

  44. T. Kim, W. Qiao, IEEE Trans. Energy Conver. 26, 1172 (2011)

    Article  Google Scholar 

  45. L. Lam, P. Bauer, E. Kelder, A practical circuit-based model for Li-Ion battery cells in electric vehicle applications, in Proceedings of 33rd IEEE INTELEC, vol 1 (2011)

    Google Scholar 

  46. L.W. Juang, P.J. Kollmeyer, T.M. Jahns, R.D. Lorenz, IEEE Trans. Ind. Appl. 49, 1480 (2013)

    Article  Google Scholar 

  47. L.X. Liao, P.J. Zuo, Y.L. Ma et al., Electrochim. Acta 60, 269 (2012)

    Article  Google Scholar 

  48. M. Dubarry, C. Truchot, B.Y. Liaw et al., J. Electrochem. Soc. 160, A191 (2013)

    Article  Google Scholar 

  49. F. Leng, C.M. Tan, M. Pecht, Sci. Rep. 5, 1 (2015)

    Google Scholar 

  50. S. Liu, J. Jiang, W. Shi et al., IEEE Trans. Ind. Electron. 62, 7557 (2015)

    Article  Google Scholar 

  51. H. He, R. Xiong, X. Zhang, F. Sun, J. Fan, IEEE Trans. Veh. Technol. 60, 1461 (2011)

    Article  Google Scholar 

  52. H.W. He, R. Xiong, H.Q. Guo, Appl. Energy 89, 413 (2012)

    Article  Google Scholar 

  53. M. Nakayama, K. Iizuka, H. Shiiba, S. Baba, M. Nogami, J. Ceram. Soc. Jpn. 119, 692 (2011)

    Article  Google Scholar 

  54. V. Srinivasan, J. Newman, Electrochem. Solid-State Lett. 9, A110 (2006)

    Article  Google Scholar 

  55. H.C. Shin et al., Electrochem. Commun. 10, 536 (2008)

    Article  Google Scholar 

  56. F. Baronti et al., IEEE Trans. Ind. Informat. 10, 1003 (2014)

    Article  Google Scholar 

  57. P. Munoz-Condes et al., IEEE Trans. Ind. Electron. 60, 191 (2013)

    Article  Google Scholar 

  58. M. Einhorn, F.V. Conte, C. Kral, J. Fleig, IEEE Trans. Power Electron. 28, 1429 (2013)

    Article  Google Scholar 

  59. M. Chen, G. Rincon-Mora, IEEE Trans. Energy Convers. 21, 504 (2006)

    Article  Google Scholar 

  60. K.M. Tsang, L. Sun, W.L. Chan, Energy Convers. Manag. 51, 2857 (2010)

    Article  Google Scholar 

  61. S. Bangaru, R. Alugonda, P. Palacharla, Modeling and simulation of Lithium-Ion battery with hysteresis for industrial applications, in Proceedings of ICEETS, vol 771 (2013)

    Google Scholar 

  62. H.A.-H. Hussein, N. Kutkut, I. Batarseh, A hysteresis model for a Lithium battery cell with improved transient response, in Proceedings of 26th Annual IEEE APEC, vol 1790 (2011)

    Google Scholar 

  63. Z. Li, X. Han, L. Lu, M. Ouyang, Chin. J. Mech. Eng. 47, 115 (2011)

    Article  Google Scholar 

  64. M.A. Roscher, O. Bohlen, J. Vetter, Int. J. Electrochem. 2011, Art ID. 984320 (2011)

    Google Scholar 

  65. N. Takami et al., J. Power Sources 244, 469 (2013)

    Article  Google Scholar 

  66. K. Onda, T. Ohshima, M. Nakayama et al., J. Power Sources 158, 535 (2006)

    Article  Google Scholar 

  67. K.S. Sajan, V. Kumar, B. Tyagi, Int. J. Electr. Power Energy Syst. 73, 200 (2015)

    Article  Google Scholar 

  68. R. Gholami, M. Shahabi, M.R. Haghifam, Int. J. Electr. Power Energy Syst. 71, 335 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiuchun Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jiang, J. (2018). Charging Optimization Methods for Lithium-Ion Batteries. In: Pistoia, G., Liaw, B. (eds) Behaviour of Lithium-Ion Batteries in Electric Vehicles. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-69950-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69950-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69949-3

  • Online ISBN: 978-3-319-69950-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics