Skip to main content

Advertisement

Log in

Achieving high-performance aqueous Zn-ion hybrid supercapacitors by utilizing zinc-based MOF-derived N-doped carbon

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Aqueous Zn-ion hybrid supercapacitors (ZHSCs) display excellent promise in energy storage technologies due to their integration merits with batteries and supercapacitors and their intrinsic safety. However, it is an important task to develop high-performance cathode materials for ZHSCs. Herein, we assembled a ZHSC by using N-doped porous carbon derived from a zinc-based metal–organic framework (MOF, ZIF-8) as the cathode and zinc as the anode. The assembled ZHSC could deliver a maximum energy density of 121.2 W h kg−1 and excellent power density of 16 kW kg−1, and long-term cycling life with 75% capacitance retention after 20,000 cycles at the current density of 1A g−1. Impressively, the assembled flexible ZHSCs could withstand various angle deformations and drive LED indicators lightning, exhibiting an application promising in wearable electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Goodenough JB (2014) Electrochemical energy storage in a sustainable modern society. Energy Environ Sci 7(1):14–18

    Article  CAS  Google Scholar 

  2. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854

    Article  CAS  PubMed  Google Scholar 

  3. Choi NS, Chen Z, Freunberger SA, Ji X, Sun YK, Amine K, Yushin G, Nazar LF, Cho J, Bruce PG (2012) Challenges facing lithium batteries and electrical double-layer capacitors. Angew Chem Int Ed 51(40):9994–10024

    Article  CAS  Google Scholar 

  4. Zhai T, Sun S, Liu X, Liang C, Wang G, Xia H (2018) Achieving insertion-like capacity at ultrahigh rate via tunable surface pseudocapacitance. Adv Mater 30(12):1706640

    Article  CAS  Google Scholar 

  5. Han P, Xu G, Han X, Zhao J, Zhou X, Cui G (2018) Lithium ion capacitors in organic electrolyte system: scientific problems, material development, and key technologies. Adv Energy Mater 8(26):1801243

    Article  CAS  Google Scholar 

  6. Yang C, Chen J, Ji X, Pollard TP, Lu X, Sun CJ, Hou S, Liu Q, Liu C, Qing T, Wang Y, Borodin O, Ren Y, Xu K, Wang C (2019) Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite. Nature 569(7755):245–250

    Article  CAS  PubMed  Google Scholar 

  7. Song M, Tan H, Chao DG, Fan HJ (2018) Recent advances in Zn-ion batteries. Adv Funct Mater 28(41):1802564

    Article  CAS  Google Scholar 

  8. Fang G, Zhou J, Pan A, Liang S (2018) Recent advances in aqueous zinc-ion batteries. ACS Energy Lett 3(10):2480–2501

    Article  CAS  Google Scholar 

  9. Pan H, Shao Y, Yan P, Cheng Y, Han KS, Nie Z, Wang C, Yang J, Li X, Bhattacharya P, Mueller KT, Liu J (2016) Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat Energy 1:16039

    Article  CAS  Google Scholar 

  10. Sun G, Yang B, Chen X, Wei Y, Yin G, Zhang H, Liu Q (2022) Aqueous zinc batteries using N-containing organic cathodes with Zn2+ and H+ Co-uptake. Chem Eng J 431(3):134253

    Article  CAS  Google Scholar 

  11. He X, Zhang H, Zhao X, Zhang P, Chen M, Zheng Z, Han Z, Zhu T, Tong Y, Lu X (2019) Stabilized molybdenum trioxide nanowires as novel ultrahigh-capacity cathode for rechargeable zinc ion battery. Adv Sci 6(14):1900151

    Article  CAS  Google Scholar 

  12. Ding J, Hu W, Paek E, Mitlin D (2018) Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem Rev 118(14):6457–6498

    Article  CAS  PubMed  Google Scholar 

  13. Wang F, Wu X, Yuan X, Liu Z, Zhang Y, Fu L, Zhu Y, Zhou Q, Wu Y, Huang W (2017) Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem Soc Rev 46(22):6816–6854

    Article  CAS  PubMed  Google Scholar 

  14. Sun G, Yang H, Zhang G, Gao J, Jin X, Zhao Y, Jiang L, Qu L (2018) A capacity recoverable zinc-ion micro-supercapacitor. Energy Environ Sci 11(12):3367–3374

    Article  CAS  Google Scholar 

  15. Zhang P, Li Y, Wang G, Wang F, Yang S, Zhu F, Zhuang X, Schmidt OG, Feng X (2019) Zn-ion hybrid micro-supercapacitors with ultrahigh areal energy density and long-term durability. Adv Mater 31(3):1806005

    Article  CAS  Google Scholar 

  16. Yang Q, Liang G, Guo Y, Liu Z, Yan B, Wang D, Huang Z, Li X, Fan J, Zhi C (2019) Do zinc dendrites exist in neutral zinc batteries: a developed electrohealing strategy to in situ rescue in-service batteries. Adv Mater 31(43):1903778

    Article  CAS  Google Scholar 

  17. Zhao Z, Zhao J, Hu Z, Li J, Li J, Zhang Y, Wang C, Cui G (2019) Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ Sci 12(6):1938–1949

    Article  CAS  Google Scholar 

  18. Liu Q, Zhang H, Xie J, Liu X, Lu X (2020) Recent progress and challenges of carbon materials for Zn-ion hybrid supercapacitors. Carbon Energy 2(4):521–539

    Article  CAS  Google Scholar 

  19. Gong X, Chen J, Lee PS (2021) Zinc-ion hybrid supercapacitors: progress and future perspective. Batteries Supercaps 4(10):1529–1546

    Article  CAS  Google Scholar 

  20. Wu S, Chen Y, Jiao T, Zhou Y, Cheng J, Liu B, Yang S, Zhang K, Zhang W (2019) An aqueous Zn-ion hybrid supercapacitor with high energy density and ultrastability up to 80000 cycles. Adv Energy Mater 9(47):1902915

    Article  CAS  Google Scholar 

  21. Li Z, Chen D, An Y, Chen C, Wu L, Chen Z, Sun Y, Zhang X (2020) Flexible and anti-freezing quasi-solid-state zinc ion hybrid supercapacitors based on pencil shavings derived porous carbon. Energy Storage Mater 28:307–314

    Article  CAS  Google Scholar 

  22. Wang H, Wang M, Tang Y (2018) A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications. Energy Storage Mater 13:1–7

    Article  Google Scholar 

  23. Zheng Y, Zhao W, Jia D, Liu Y, Cui L, Wei D, Zheng R, Liu J (2020) Porous carbon prepared via combustion and acid treatment as flexible zinc-ion capacitor electrode material. Chem Eng J 387:124161

    Article  CAS  Google Scholar 

  24. Yu P, Zeng Y, Zeng YX, Dong H, Hu H, Liu Y, Zheng M, Xiao Y, Lu X, Liang Y (2019) Achieving high-energy-density and ultra-stable zinc-ion hybrid supercapacitors by engineering hierarchical porous carbon architecture. Electrochim Acta 327:134999

    Article  CAS  Google Scholar 

  25. Zhang H, Liu Q, Fang Y, Teng C, Liu X, Fang P, Tong Y, Lu X (2019) Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption. Adv Mater 44:1904948

    Article  CAS  Google Scholar 

  26. Tian Y, Amal R, Wang D-W (2016) An aqueous metal-ion capacitor with oxidized carbon nanotubes and metallic zinc electrodes. Front Energy Res 4(4):34

    Google Scholar 

  27. Han L, Huang H, Fu X, Li J, Yang Z, Liu X, Pan L, Xu M (2020) A flexible, high-voltage and safe zwitterionic natural polymer hydrogel electrolyte for high energy-density zinc-ion hybrid supercapacitor. Chem Eng J 392:123733

    Article  CAS  Google Scholar 

  28. Dong L, Ma X, Li Y, Zhao L, Liu W, Cheng J, Xu C, Li B, Yang Q-H, Kang F (2018) Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Mater 13:96–102

    Article  Google Scholar 

  29. An G-H, Hong J, Pak S, Cho Y, Lee S, Hou B, Cha S (2020) Zn-Ion Supercapacitors: 2D metal Zn nanostructure electrodes for high-performance Zn ion supercapacitors. Adv Energy Mater 10(3):1902981

    Article  CAS  Google Scholar 

  30. Wang Q, Wang S, Guo X, Ruan L, Wei N, Ma X, Li J, Wang M, Li W, Zeng W (2019) Mxene-reduced graphene oxide aerogel for aqueous zinc-ion hybrid supercapacitor with ultralong cycle life. Adv Electron Mater 5(12):1900537

    Article  CAS  Google Scholar 

  31. Liu P, Liu W, Huang Y, Li P, Yan J, Liu K (2020) Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-ion energy storage. Energy Stor Mater 25:858–865

    Article  CAS  Google Scholar 

  32. Chen S, Ma L, Zhang K, Kamruzzaman M, Zhi C, Zapien JA (2019) A flexible solid-state zinc ion hybrid supercapacitor based on copolymer derived hollow carbon spheres. J Mater Chem A 7:7784–7790

    Article  CAS  Google Scholar 

  33. Lu Y, Li Z, Bai Z, Mi H, Ji C, Pang H, Yu C, Qiu J (2019) High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N Co-doped carbon cathode. Nano Energy 66:104132–104444

    Article  CAS  Google Scholar 

  34. Liu P, Gao Y, Tan Y, Liu W, Huang Y, Yan J, Liu K (2019) Rational design of nitrogen doped hierarchical porous carbon for optimized zinc-ion hybrid supercapacitors. Nano Res 12(11):2835–2841

    Article  CAS  Google Scholar 

  35. Xiong T, Shen Y, Lee WS, Xue J (2020) Metal organic framework derived carbon for ultrahigh power and long cyclic life aqueous Zn ion capacitor. Nano Mater Sci 2(2):159–163

    Article  Google Scholar 

  36. Pan Z, Lu Z, Xu L, Wang D (2020) A robust 2D porous carbon nanoflake cathode for high energy-power density Zn-ion hybrid supercapacitor applications. Appl Surf Sci 510:145384

    Article  CAS  Google Scholar 

  37. Sun G, Xiao Y, Lu B, Jin X, Yang H, Dai C, Zhang X, Zhao Y, Qu L (2020) Hybrid energy storage device: combination of zinc-ion supercapacitor and zinc-air battery in mild electrolyte. ACS Appl Mater Interfaces 12(6):7239–7248

    Article  CAS  PubMed  Google Scholar 

  38. Chen M, Chen J, Zhou W, Xu J, Wong C (2019) High-performance flexible and self-healable quasi-solid-state zinc-ion hybrid supercapacitor based on borax-crosslinked polyvinyl alcohol/nanocellulose hydrogel electrolyte. J Mater Chem A 7(46):26524–26532

    Article  CAS  Google Scholar 

  39. Lee YG, An GH (2020) Synergistic effects of phosphorus and boron Co-incorporated activated carbon for ultrafast zinc-ion hybrid supercapacitors. ACS Appl Mater Interfaces 12:41342–41349

    Article  CAS  PubMed  Google Scholar 

  40. Ma H, Chen H, Wu M, Chi F, Liu BJ, Cheng H, Li Ch, Qu L (2020) Maximization of spatial charge density: an approach to ultrahigh energy density of capacitive charge storage. Angew Chem Int Ed 59(34):14541–14549

    Article  CAS  Google Scholar 

  41. Dong L, Yang W, Yang W, Li Y, Wu W, Wang G (2019) Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors. J Mater Chem A 7(23):13810–13832

    Article  CAS  Google Scholar 

  42. Salunkhe RR, Kaneti YV, Kim J, Kim JH, Yamauchi Y (2016) Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications. Acc Chem Res 49:2796–2806

    Article  CAS  PubMed  Google Scholar 

  43. Sun G, Yu L, Hu Y, Sha Y, Rong H, Li B, Liu HJ, Liu Q (2019) A Manganese-based coordination polymer containing no solvent as a high performance anode in Li-ion batteries. Cryst Growth Des 19:6503–6510

    Article  CAS  Google Scholar 

  44. Nguyen QH, Luu VT, Lim SN, Lee Y-W, Cho Y, Jun Y-S, Seo MH, Ahn W (2021) Metal–organic frameworks reinforce the carbon nanotube sponge-derived robust three-dimensional sulfur host for lithium–sulfur batteries. ACS Appl Mater Interf 13(24):28036–28048

    Article  CAS  Google Scholar 

  45. Barua A, Paul A (2021) Synergistic effect of oxygen and nitrogen Co-doping in metal–organic framework-derived ultramicroporous carbon for an exceptionally stable solid-state supercapacitor via a “proton trap” mechanism. Energy Fuels 35(12):10262–10273

    Article  CAS  Google Scholar 

  46. Wen Y, Chen X, Mijowsk E (2020) Insight into the effect of ZIF-8 particle size on the performance in nanocarbon-based supercapacitors Chem. Eur J 26(69):16328–16337

    Article  CAS  Google Scholar 

  47. Salunkhe RR, Young C, Tang J, Takei T, Ide Y, Kobayashi N, Yamauchi Y (2016) A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic electrolyte. Chem Commun 52:4764–4767

    Article  CAS  Google Scholar 

  48. Wang H, Zhu QL, Zou R, Xu Q (2017) Metal-organic frameworks for energy applications Chem 2(1):52–80

    CAS  Google Scholar 

  49. Park KS, Ni Z, Côté AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM (2006) Exceptional chemical and the thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA 103(27):10186–10191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu X, Jiang L, Long C, Fan Z (2015) From flour to honeycomb-like carbon foam: carbon makes room for high energy density supercapacitors. Nano Energy 13:527–536

    Article  CAS  Google Scholar 

  51. Wang D, Pan Z, Chen G, Lu Z (2021) Glycerol derived mesopore-enriched hierarchically carbon nanosheets as the cathode for ultrafast zinc ion hybrid supercapacitor applications. Electrochim Acta 379:138170

    Article  CAS  Google Scholar 

  52. Wang D, Nai J, Li H, Xu L, Wang Y (2019) A robust strategy for the general synthesis of hierarchical carbons constructed by nanosheets and their application in high performance supercapacitor in ionic liquid electrolyte. Carbon 141:40–49

    Article  CAS  Google Scholar 

  53. Jiang Y, Liu J (2019) Definitions of pseudocapacitive materials: a brief review. Energy Environ Mater 2(1):30–37

    Article  Google Scholar 

  54. Patil B, Ahn S, Yu S, Song H, Jeong Y, Kim JH, Ahn H (2018) Electrochemical performance of a coaxial fiber-shaped asymmetric supercapacitor based on nanostructured MnO2/CNT-web paper and Fe2O3/carbon fiber electrodes. Carbon 134:366–375

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21975034), the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Research Project of State Key Laboratory of Coordination Chemistry.

Author information

Authors and Affiliations

Authors

Contributions

Yinhua Wei contributed to the materials synthesis, electrochemical test, analysis, and writing of the manuscript. Xiaojuan Chen and Daozheng Shen contributed to the SEM and TEM measurement and analysis. Gexiang Gao and Hongren Rong helped with the supacacitor assembly process. Q. Liu conceived and coordinated the study and led the writing of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qi Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22.0 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Chen, X., Gao, G. et al. Achieving high-performance aqueous Zn-ion hybrid supercapacitors by utilizing zinc-based MOF-derived N-doped carbon. Ionics 28, 3477–3488 (2022). https://doi.org/10.1007/s11581-022-04587-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04587-3

Keywords

Navigation