Skip to main content
Log in

CC@BCN@PANI core-shell nanoarrays as ultra-high cycle stability cathode for Zn-ion hybrid supercapacitors

  • Research Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

Exploring cathode materials that combine excellent cycling stability and high energy density poses a challenge to aqueous Zn-ion hybrid supercapacitors (ZHSCs). Herein, polyaniline (PANI) coated boron-carbon-nitrogen (BCN) nanoarray on carbon cloth surface is prepared as advanced cathode materials via simple high-temperature calcination and electrochemical deposition methods. Because of the excellent specific capacity and conductivity of PANI, the CC@BCN@PANI core-shell nanoarrays cathode shows an excellent ion storage capability. Moreover, the 3D nanoarray structure can provide enough space for the volume expansion and contraction of PANI in the charging/discharging cycles, which effectively avoids the collapse of the microstructure and greatly improves the electrochemical stability of PANI. Therefore, the CC@BCN@PANI-based ZHSCs exhibit superior electrochemical performances showing a specific capacity of 145.8 mAh/g, a high energy density of 116.78 Wh/kg, an excellent power density of 12 kW/kg, and a capacity retention rate of 86.2% after 8000 charge/discharge cycles at a current density of 2 A/g. In addition, the flexible ZHSCs (FZHSCs) also show a capacity retention rate of 87.7% at the current density of 2 A/g after 450 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang R, Yao M, Niu Z. Smart supercapacitors from materials to devices. InfoMat, 2020, 2(1): 113–125

    Article  Google Scholar 

  2. Fu Q, Hao S, Zhang X, et al. All-round supramolecular zwitterionic hydrogel electrolytes enabling environmentally adaptive dendrite-free aqueous zinc ion capacitors. Energy & Environmental Science, 2023, 16(3): 1291–1311

    Article  Google Scholar 

  3. Ock I W, Lee J, Kang J K. Metal-organic framework-derived anode and polyaniline chain networked cathode with mesoporous and conductive pathways for high energy density, ultrafast rechargeable, and long-life hybrid capacitors. Advanced Energy Materials, 2020, 10(48): 2001851

    Article  Google Scholar 

  4. Mennel J A, Chidambaram D. A review on the development of electrolytes for lithium-based batteries for low temperature applications. Frontiers in Energy, 2023, 17(1): 43–71

    Article  Google Scholar 

  5. Jiang D, Li C, Yang W, et al. Fabrication of an arbitrary-shaped and nitrogen-doped graphene aerogel for highly compressible all solid-state supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(35): 18684–18690

    Article  Google Scholar 

  6. Tang H, Yao J J, Zhu Y. Recent developments and future prospects for zinc-ion hybrid capacitors: A review. Advanced Energy Materials, 2021, 11(14): 2003994

    Article  Google Scholar 

  7. Xie C, Li Y, Wang Q, et al. Issues and solutions toward zinc anode in aqueous zinc-ion batteries: A mini review. Carbon Energy, 2020, 2(4): 540–560

    Article  Google Scholar 

  8. Hu C, Wu A, Zhu F, et al. Lithium-ion modified cellulose as a water-soluble binder for Li-O2 battery. Frontiers in Energy, 2022, 16(3): 502–508

    Article  Google Scholar 

  9. Choudhary N, Li C, Moore J L, et al. Asymmetric supercapacitor electrodes and devices. Advanced Materials, 2017, 29(21): 1605336

    Article  Google Scholar 

  10. Zou K, Cai P, Liu C, et al. A kinetically well-matched full-carbon sodium-ion capacitor. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(22): 13540–13549

    Article  Google Scholar 

  11. Chen J, Yang B, Hou H, et al. Disordered, large interlayer spacing, and oxygen-rich carbon nanosheets for potassium ion hybrid capacitor. Advanced Energy Materials, 2019, 9(19): 1803894

    Article  Google Scholar 

  12. Han P, Xu G, Han X, et al. Lithium-ion capacitors in organic electrolyte system: Scientific problems, material development, and key technologies. Advanced Energy Materials, 2018, 8(26): 1801243

    Article  Google Scholar 

  13. Wu N, Yao W, Song X, et al. A calcium-ion hybrid energy storage device with high capacity and long cycling life under room temperature. Advanced Energy Materials, 2019, 9(16): 1803865

    Article  Google Scholar 

  14. Ma X, Cheng J, Dong L, et al. Multivalent ion storage towards high-performance aqueous zinc-ion hybrid supercapacitors. Energy Storage Materials, 2019, 20(46): 335–342

    Article  Google Scholar 

  15. Dubey R J, Colijn T, Aebli M, et al. Zeolite-templated carbon as a stable, high power magnesium-ion cathode material. ACS Applied Materials & Interfaces, 2019, 11(43): 39902–39909

    Article  Google Scholar 

  16. Song M, Tan H, Chao D, et al. Recent advances in Zn-ion batteries. Advanced Functional Materials, 2018, 28(41): 1802564

    Article  Google Scholar 

  17. Su L, Liu L, Liu B, et al. Revealing the impact of oxygen dissolved in electrolytes on aqueous zinc-ion batteries. iScience, 2020, 23(4): 100995

    Article  Google Scholar 

  18. Tang B, Shan L, Liang S, et al. Issues and opportunities facing aqueous zinc-ion batteries. Energy & Environmental Science, 2019, 12(11): 3288–3304

    Article  Google Scholar 

  19. Han L, Huang H, Fu X, et al. A flexible, high-voltage and safe zwitterionic natural polymer hydrogel electrolyte for high-energy-density zinc-ion hybrid supercapacitor. Chemical Engineering Journal, 2020, 392: 123733

    Article  Google Scholar 

  20. Pu J, Cao Q, Gao Y, et al. Ultrafast-charging quasi-solid-state fiber-shaped zinc-ion hybrid super-capacitors with superior flexibility. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2021, 9(32): 17292–17299

    Article  Google Scholar 

  21. Xu X, Tang J, Qian H, et al. Three-dimensional networked metal-organic frameworks with conductive polypyrrole tubes for flexible supercapacitors. ACS Applied Materials & Interfaces, 2017, 9(44): 38737–38744

    Article  Google Scholar 

  22. Wang Y, Jiang H, Zheng R, et al. A flexible, electrochromic, rechargeable Zn-ion battery based on actiniae-like self-doped polyaniline cathode. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(25): 12799–12809

    Article  Google Scholar 

  23. Borges J, Rodrigues L C, Reis R L, et al. Layer-by-layer assembly of light-responsive polymeric multilayer systems. Advanced Functional Materials, 2014, 24(36): 5624–5648

    Article  Google Scholar 

  24. Hu L, Wan Y, Zhang Q, et al. Harnessing the power of stimuli-responsive polymers for actuation. Advanced Functional Materials, 2020, 30(2): 1903471

    Article  Google Scholar 

  25. Li C, Zheng C, Cao F, et al. The development trend of graphene derivatives. Journal of Electronic Materials, 2022, 51(8): 4107–4114

    Article  Google Scholar 

  26. Liang Z, Tu H, Shi D, et al. In-situ growing BCN nanotubes on carbon fibers for novel high-temperature supercapacitor with excellent cycling performance. Small, 2021, 17(51): 2102899

    Article  Google Scholar 

  27. Wang X, Feng Z, Hou X, et al. Fluorine doped carbon coating of LiFePO4 as a cathode material for lithium-ion batteries. Chemical Engineering Journal, 2020, 379(56): 122371

    Article  Google Scholar 

  28. Xu Y, Jiang J, Li Z, et al. Aerosol-assisted preparation of N-doped hierarchical porous carbon spheres cathodes toward high-stable lithium-ion capacitors. Journal of Materials Science, 2020, 55(27): 13127–13140

    Article  Google Scholar 

  29. Yang J, Zhai Y, Zhang X, et al. Perspective on carbon anode materials for K+ storage: Balancing the intercalation-controlled and surface-driven behavior. Advanced Energy Materials, 2021, 11(29): 2100856

    Article  Google Scholar 

  30. Tabassum H, Zou R, Mahmood A, et al. A universal strategy for hollow metal oxide nanoparticles encapsulated into B/N co-doped graphitic nanotubes as high-performance lithium-ion battery anodes. Advanced Materials, 2018, 30(8): 1705441

    Article  Google Scholar 

  31. Tabassum H, Guo W, Meng W, et al. Metal-organic frameworks derived cobalt phosphide architecture encapsulated into B/N Co-doped graphene nanotubes for all pH value electrochemical hydrogen evolution. Advanced Energy Materials, 2017, 7(9): 1601671

    Article  Google Scholar 

  32. Tabassum H, Qu C, Cai K, et al. Large-scale fabrication of BCN nanotube architecture entangled on a three-dimensional carbon skeleton for energy storage. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(25): 21225–21230

    Google Scholar 

  33. Fu N, Liu Y, Liu R, et al. Metal cation-assisted synthesis of amorphous B, N co-doped carbon nanotubes for superior sodium storage. Small, 2020, 16(20): 2001607

    Article  Google Scholar 

  34. Shi L, Ye J, Lu H, et al. Flexible all-solid-state supercapacitors based on boron and nitrogen-doped carbon network anchored on carbon fiber cloth. Chemical Engineering Journal, 2021, 410(55): 128365

    Article  Google Scholar 

  35. Cong Z, Guo W, Zhang P, et al. Wearable antifreezing fiber-shaped Zn/PANI batteries with suppressed Zn dendrites and operation in sweat electrolytes. ACS Applied Materials & Interfaces, 2021, 13(15): 17608–17617

    Article  Google Scholar 

  36. Cao L, Wang Y, Zhu Q, et al. Co/Co−N/Co−O rooted on rGO hybrid BCN nanotube arrays as efficient oxygen electrocatalyst for Zn-air batteries. ACS Applied Materials & Interfaces, 2022, 14(15): 17249–17258

    Article  Google Scholar 

  37. Wang S, Ma F, Jiang H, et al. Band gap-tunable porous borocarbonitride nanosheets for high energy-density supercapacitors. ACS Applied Materials & Interfaces, 2018, 10(23): 19588–19597

    Article  Google Scholar 

  38. Yang M, Shi D, Sun X, et al. Shuttle confinement of lithium polysulfides in borocarbonitride nanotubes with enhanced performance for lithium-sulfur batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(1): 296–304

    Article  Google Scholar 

  39. Gu D, Ding C, Qin Y, et al. Behavior of electrical charge storage/release in polyaniline electrodes of symmetric supercapacitor. Electrochimica Acta, 2017, 245(17): 146–155

    Article  Google Scholar 

  40. Li X, Li Y, Xie S, et al. Zinc-based energy storage with functionalized carbon nanotube/polyaniline nanocomposite cathodes. Chemical Engineering Journal, 2022, 427(59): 131799

    Article  Google Scholar 

  41. Cao L, Zhou X, Li Z, et al. Nitrogen and fluorine hybridization state tuning in hierarchical honeycomb-like carbon nanofibers for optimized electrocatalytic ORR in alkaline and acidic electrolytes. Journal of Power Sources, 2019, 413(15): 376–383

    Article  Google Scholar 

  42. Liao X, Pan C, Yan H, et al. Polyaniline-functionalized graphene composite cathode with enhanced Zn2+ storage performance for aqueous zinc-ion battery. Chemical Engineering Journal, 2022, 440(18): 135930

    Article  Google Scholar 

  43. Li W, Gao F, Wang X, et al. Strong and robust polyaniline-based supramolecular hydrogels for flexible supercapacitors. Angewandte Chemie, 2016, 128(32): 9342–9347

    Article  Google Scholar 

  44. Wang D W, Li F, Chen Z G, et al. Synthesis and electrochemical property of boron-doped mesoporous carbon in supercapacitor. Chemistry of Materials, 2008, 20(22): 7195–7200

    Article  Google Scholar 

  45. Huang Z, Wang T, Song H, et al. Effects of anion carriers on capacitance and self-discharge behaviors of zinc ion capacitors. Angewandte Chemie, 2021, 133(2): 1024–1034

    Article  Google Scholar 

  46. Yang J, Bissett M A, Dryfe R A W. Investigation of coltage range and self-discharge in aqueous zinc-ion hybrid supercapacitors. ChemSusChem, 2021, 14(7): 1700–1709

    Article  Google Scholar 

  47. Huang Z, Chen A, Mo F, et al. Phosphorene as cathode material for high-voltage, anti-self-discharge zinc ion hybrid capacitors. Advanced Energy Materials, 2020, 10(24): 2001024

    Article  Google Scholar 

  48. Song T, Hao H, Zhao Y, et al. High-performance Zn-ion hybrid supercapacitor enabled by the hierarchical N/S co-doped graphene/polyaniline cathode. Journal of Alloys and Compounds, 2022, 924: 166493

    Article  Google Scholar 

  49. Ruan P, Xu X, Gao X, et al. Achieving long-cycle-life Zn-ion batteries through interfacial engineering of MnO2-polyaniline hybrid networks. Sustainable Materials and Technologies, 2021, 28: e00254

    Article  Google Scholar 

  50. Luo Y, Guo R, Li T, et al. Application of polyaniline for Li-ion batteries, lithium-sulfur batteries, and supercapacitors. ChemSusChem, 2019, 12(8): 1591–1611

    Article  Google Scholar 

  51. Ghosh K, Yue C Y, Sk M M, et al. Development of 3D urchin-shaped coaxial manganese dioxide@polyaniline (MnO2@PANI) composite and self-assembled 3D pillared graphene foam for asymmetric all-solid-state flexible supercapacitor application. ACS Applied Materials & Interfaces, 2017, 9(18): 15350–15363

    Article  Google Scholar 

  52. Shen Y, Qin Z, Hu S Y, et al. In-situ hybridization of graphene sheets onto polyaniline nanofiber arrays grown on the surface of carbon cloth under high electric voltage field for high-performance flexible supercapacitor. Carbon, 2020, 158(14): 711–718

    Article  Google Scholar 

  53. Cui F Z, Liu Z, Ma D L, et al. Polyarylimide and porphyrin-based polymer microspheres for zinc ion hybrid capacitors. Chemical Engineering Journal, 2021, 405(26): 127038

    Article  Google Scholar 

  54. Wang Q, Wang S, Guo X, et al. MXene-reduced graphene oxide aerogel for aqueous zinc-ion hybrid supercapacitor with ultralong cycle life. Advanced Electronic Materials, 2019, 5(12): 1900537

    Article  Google Scholar 

  55. Huang Z, Zhang R, Zhang S, et al. Recent advances and future perspectives for aqueous zinc-ion capacitors. Materials Futures, 2022, 1(2): 022101

    Article  Google Scholar 

  56. Liang G, Li X, Wang Y, et al. Building durable aqueous K-ion capacitors based on MXene family. Nano Research Energy, 2022, 1(1): e9120002

    Article  Google Scholar 

  57. Xu L, Pan G, Yu C, et al. Co-doped MnO2 with abundant oxygen vacancies as a cathode for superior aqueous magnesium ion storage. Inorganic Chemistry Frontiers, 2023, 10(6): 1748–1757

    Article  Google Scholar 

  58. Li Y, Yang W, Huang Y, et al. High-performance zinc-ion batteries enabled by electrochemically induced trans-formation of vanadium oxide cathodes. Journal of Energy Chemistry, 2021, 60(17): 233–240

    Google Scholar 

  59. Luo P, Xiao Y, Yang J, et al. Polyaniline nanoarrays/carbon cloth as binder-free and flexible cathode for magnesium ion batteries. Chemical Engineering Journal, 2022, 433(14): 133772

    Article  Google Scholar 

  60. Chen L, Xu X, Wan L, et al. Carbon-incorporated Fe3O4 nanoflakes: High-performance faradaic materials for hybrid capacitive deionization and supercapacitors. Materials Chemistry Frontiers, 2021, 5(8): 3480–3488

    Article  Google Scholar 

  61. Lu Y, Li Z, Bai Z, et al. High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode. Nano Energy, 2019, 66(17): 104132

    Article  Google Scholar 

  62. Dong L, Ma X, Li Y, et al. Extremely safe, high-rate and ultralong-life zinc-ion hybrid super-capacitors. Energy Storage Materials, 2018, 13(56): 96–102

    Article  Google Scholar 

  63. Han J, Wang K, Liu W, et al. Rational design of nano-architecture composite hydrogel electrode towards high performance Zn-ion hybrid cell. Nanoscale, 2018, 10(27): 13083–13091

    Article  Google Scholar 

  64. Yao M, Yuan Z, Li S, et al. Scalable assembly of flexible ultrathin all-in-one zinc-ion batteries with highly stretchable, editable, and customizable functions. Advanced Materials, 2021, 33(10): 2008140

    Article  Google Scholar 

  65. Chen L, Fu J, Lu Q, et al. Cross-linked polymeric ionic liquids ion gel electrolytes by in situ radical polymerization. Chemical Engineering Journal, 2019, 378: 122245

    Article  Google Scholar 

  66. Dong L, Yang W, Yang W, et al. Multivalent metal ion hybrid capacitors: A review with a focus on zinc-ion hybrid capacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(23): 13810–13832

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangxi Province (Grant Nos. 20224BAB214006, 20224BAB214029, and 20212ACB203004), the Planning Project of Jiangxi Provincial Technological Innovation Guidance (Grant No. 20202BDH80003), and the Youth Foundation of Jiangxi Provincial Department of Education (Grant Nos. GJJ210857 and GJJ210856).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Cao, Lanlan Fan or Feng Gu.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, S., Ke, H., Cao, L. et al. CC@BCN@PANI core-shell nanoarrays as ultra-high cycle stability cathode for Zn-ion hybrid supercapacitors. Front. Energy 17, 555–566 (2023). https://doi.org/10.1007/s11708-023-0882-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-023-0882-8

Keywords

Navigation