Skip to main content
Log in

Hydrothermal synthesis of olivine phosphates in the presence of excess phosphorus: a case study of LiMn0.8Fe0.19Mg0.01PO4

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Our previous work reported a new strategy based on a P excess reaction system to hydrothermally synthesize lithium transition metal phosphates (LiMPO4), and herein the effect of P excess on the synthesis and property of LiMPO4 is investigated in detail by taking the multi-component LiMn0.8Fe0.19Mg0.01PO4 as a case. The results show that a proper degree of P excess is fairly profitable for hydrothermal synthesis including the effect on suppressing the occurrence of undesired Fe2+ oxidation during synthesis and improving the particle dispersion of hydrothermal product, and thus the obtained samples have enhanced electrochemical performance. These effects of P excess should be general and applicable to hydrothermal synthesis of other lithium transition metal phosphates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yoshimura M (1998) Importance of soft solution processing for advanced inorganic materials. J Mater Res 13:796–802

    Article  CAS  Google Scholar 

  2. Demazeau G (1999) Solvothermal processes: a route to the stabilization of new materials. J Mater Chem 9:15–18

    Article  CAS  Google Scholar 

  3. Yu SH (2001) Hydrothermal/solvothermal processing of advanced ceramic materials. J Ceram Soc Jpn 109:S65–S75

    Article  CAS  Google Scholar 

  4. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946

    Article  CAS  PubMed  Google Scholar 

  5. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301

    Article  CAS  PubMed  Google Scholar 

  6. Devaraju MK, Honma I (2012) Hydrothermal and solvothermal process towards development of LiMPO4 (M = Fe, Mn) nanomaterials for lithium-ion batteries. Adv Energy Mater 2:284–297

    Article  CAS  Google Scholar 

  7. Devaraju MK, Truong QD, Tomai T, Honma I (2014) Supercritical fluid methods for synthesizing cathode materials towards lithium ion battery applications. Rsc Adv 4:27452–27470

    Article  CAS  Google Scholar 

  8. Zhang J, Luo SH, Chang LJ, Bao S, Liu JN, Hao AM, Wang ZY, Liu YG, Xu Q, Zhai YC (2016) In-situ growth of LiMnPO4 on porous LiAlO2 nanoplates substrates from AAO synthesized by hydrothermal reaction with improved electrochemical performance. Electrochim Acta 193:6–23

    Google Scholar 

  9. Luo SH, Hu DB, Liu H, Li JZ, Yi TF (2019) Hydrothermal synthesis and characterization of α-Fe2O3/C using acid-pickled iron oxide red for Li-ion batteries. J Hazard Mater 368:714–721

    Article  CAS  PubMed  Google Scholar 

  10. Li JZ, Luo SH, Sun Y, Li JY, Zhang J, Yi TF (2019) Li0.95Na0.05MnPO4/C nanoparticles compounded with reduced graphene oxide sheets for superior lithium ion battery cathode performance. Ceram Int 45:4849–4856

    Article  CAS  Google Scholar 

  11. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  12. Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M (2001) Electroactivity of natural or synthetic triphylite. J Power Sources 97–98:503–507

    Article  Google Scholar 

  13. Chen ZH, Dahn JR (2002) Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density. J Electrochem Soc 149:A1184–A1189

    Article  CAS  Google Scholar 

  14. Chung SY, Bloking JT, Chiang YM (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1:123–128

    Article  CAS  PubMed  Google Scholar 

  15. Li GH, Azuma H, Tohda M (2002) LiMnPO4 as the cathode for lithium batteries. Electrochem Solid-State Lett 5:A135–A137

    Article  CAS  Google Scholar 

  16. Yamada A, Hosoya M, Chung SC, Kudo Y, Hinokuma K, Liu KY, Nishi Y (2003) Olivine-type cathodes: achievements and problems. J Power Sources 119–121:232–238

    Article  CAS  Google Scholar 

  17. Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater 3:147–152

    Article  CAS  PubMed  Google Scholar 

  18. Islam MS, Driscoll DJ, Fisher CAJ, Slater PR (2005) Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem Mater 17:5085–5092

    Article  CAS  Google Scholar 

  19. Delacourt C, Poizot P, Levasseur S, Masquelier C (2006) Size effects on carbon-free LiFePO4 powders: the key to superior energy density. Electrochem Solid-State Lett 9:A352–A355

    Article  CAS  Google Scholar 

  20. Gibot P, Casa-Cabanas M, Laffont L, Levasseur S, Carlach P, Hamelet S, Tarascon JM, Masquelier C (2008) Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4. Nat Mater 7:741–747

    Article  CAS  PubMed  Google Scholar 

  21. Fisher CAJ, Prieto VMH, Islam MS (2008) Lithium battery materials LiMPO4 (M = Mn, Fe Co, and Ni): insights into defect association, transport mechanisms, and doping behavior. Chem Mater 20:5907–5915

    Article  CAS  Google Scholar 

  22. Martha SK, Grinblat J, Haik O, Zinigrad E, Drezen T, Miners JH, Exnar I, Kay A, Markovsky B, Aurbach D (2009) LiMn0.8Fe0.2PO4: an advanced cathode material for rechargeable lithium batteries. Angew Chem Int Ed 48:8559–8563

    Article  CAS  Google Scholar 

  23. Oh SM, Oh SW, Yoon CS, Scrosati B, Amine K, Sun YK (2010) High-performance carbon-LiMnPO4 nanocomposite cathode for lithium batteries. Adv Funct Mater 20:3260–3265

    Article  CAS  Google Scholar 

  24. Hu CL, Yi HH, Fang HS, Yang B, Yao YC, Ma WH, Dai YN (2010) Improving the electrochemical activity of LiMnPO4 via Mn-site co-substitution with Fe and Mg. Electrochem Commun 12:1784–1787

    Article  CAS  Google Scholar 

  25. Fang HS, Dai ER, Yang B, Yao YC, Ma WH (2012) LiMn0.8Fe0.19Mg0.01PO4/C as a high performance cathode material for lithium ion batteries. J Power Sources 204:193–196

    Article  CAS  Google Scholar 

  26. Liu S, Fang HS, Dai ER, Yang B, Yao YC, Ma WH, Dai YN (2014) Effect of carbon content on properties of LiMn0.8Fe0.19Mg0.01PO4/C composite cathode for lithium ion batteries. Electrochim Acta 116:97–102

    Article  CAS  Google Scholar 

  27. Zhang XY, van Hulzen M, Singh DP, Brownrigg A, Wright JP, van Dijk NH, Wagemaker M (2015) Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling. Nat Commun 6:8333

    Article  CAS  PubMed  Google Scholar 

  28. Hong L, Li LS, Chen-Wiegart YK, Wang JJ, Xiang K, Gan LY, Li WJ, Meng F, Wang F, Wang J, Chiang YM, Jin S, Tang M (2017) Two-dimensional lithium diffusion behavior and probable hybrid phase transformation kinetics in olivine lithium iron phosphate. Nat Commun 8:114

    Article  CAS  Google Scholar 

  29. Kobayashi S, Kuwabara A, Fisher CAJ, Ukyo Y, Ikuhara Y (2018) Microscopic mechanism of biphasic interface relaxation in lithium iron phosphate after delithiation. Nat Commun 9:2863

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Khalfaouy RE, Turan S, Dermenci KB, Savaci U, Addaou A, Laajeb A, Lahsini A (2019) Nickel-substituted LiMnPO4/C olivine cathode material: Combustion synthesis, characterization and electrochemical performances. Ceram Int 45:17688–17695

    Article  CAS  Google Scholar 

  31. Chen W, Fang HS (2019) Aluminum doping in LiMnPO4 with an unexpected charge compensation. J Electrochem Soc 166:A2752–A2754

    Article  CAS  Google Scholar 

  32. Manthiram A (2020) A reflection on lithium-ion battery cathode chemistry. Nat Commun 11:1

  33. Yang SF, Zavalij PY, Whittingham MS (2001) Hydrothermal synthesis of lithium iron phosphate cathodes. Electrochem Commun 3:505–508

    Article  CAS  Google Scholar 

  34. Chen JJ, Wang SJ, Whittingham MS (2007) Hydrothermal synthesis of cathode materials. J Power Sources 174:442–448

    Article  CAS  Google Scholar 

  35. Tajimi S, Ikeda Y, Uematsu K, Toda K, Sato M (2004) Enhanced electrochemical performance of LiFePO4 prepared by hydrothermal reaction. Solid State Ionics 175:287–290

    Article  CAS  Google Scholar 

  36. Meligrana G, Gerbaldi C, Tuel A, Bodoardo S, Penazzi N (2006) Hydrothermal synthesis of high surface LiFePO4 powers as cathode for Li-ion cells. J Power Sources 160:516–522

    Article  CAS  Google Scholar 

  37. Dokko K, Shiraishi K, Kanamura K (2005) Identification of surface impurities on LiFePO4 particles prepared by a hydrothermal process. J Chem Soc 152:A2199-2202

    Google Scholar 

  38. Dokko K, Koizumi S, Nakano H, Kanamura K (2007) Particle morphology, crystal orientation, and electrochemical reactivity of LiFePO4 synthesized by the hydrothermal method at 443 K. J Mater Chem 17:4803–4810

    Article  CAS  Google Scholar 

  39. Ellis B, Kan WH, Makahnouk WRM, Nazar LF (2007) Synthesis of nanocrystals and morphology control of hydrothermal prepared LiFePO4. J Mater Chem 17:3248–3254

    Article  CAS  Google Scholar 

  40. Fang HS, Pan ZY, Li LP, Yang Y, Yan GF, Li GS, Wei SQ (2008) The possibility of manganese disorder in LiMnPO4 and its effect on the electrochemical activity. Electrochem Commun 10:1071–1073

    Article  CAS  Google Scholar 

  41. Jugović D, Uskoković D (2009) A review of recent developments in the synthesis procedures of lithium iron phosphate powders. J Power Sources 190:538–544

    Article  CAS  Google Scholar 

  42. Bo J, Gu HB, Zhang W, Park KH, Sun GP (2008) Effect of different carbon conductive additives on electrochemical properties of LiFePO4-C/Li batteries. J Solid State Electrochem 12:1549–1554

    Article  CAS  Google Scholar 

  43. Zhao RR, Lan BY, Chen HY, Ma GZ (2012) Hydrothermal synthesis and properties of manganese-doped LiFePO4. Ionics 18:873–879

    Article  CAS  Google Scholar 

  44. Zhang N, Lin L, Xu Z (2014) Effect of synthesis temperature, time, and carbon content on the properties and lithium-ion diffusion of LiFePO4/C composites. J Solid State Electrochem 18:2401–2410

    Article  CAS  Google Scholar 

  45. Muruganantham R, Sivakumar M, Subadevi R (2016) Synthesis and electrochemical characterization of olivine-type lithium iron phosphate cathode materials via different techniques. Ionics 22:1557–1565

    Article  CAS  Google Scholar 

  46. Zhang JL, Wang J, Liu YY, Nie N, Gu JJ, Yu F, Li W (2015) High-performance lithium iron phosphate with phosphorus-doped carbon layers for lithium ion batteries. J Mater Chem A 3:2043–2049

    Article  CAS  Google Scholar 

  47. Yang JX, Li ZJ, Guang TJ, Hu MM, Cheng RF, Wang RY, Shi C, Chen JX, Hou PX, Zhu KJ, Wang XH (2018) Green synthesis of high-performance LiFePO4 nanocrystals in pure water. Green Chem 20:5215–5223

    Article  CAS  Google Scholar 

  48. Qin X, Wang JM, Xie J, Li FZ, Wen L, Wang XH (2012) Hydrothermally synthesized LiFePO4 crystals with enhanced electrochemical properties: simultaneous suppression of crystal growth along [010] and antisite defect formation. Phys Chem Chem Phys 14:2669–2677

    Article  CAS  PubMed  Google Scholar 

  49. Lee J, Teja AS (2005) Characteristics of lithium iron phosphate (LiFePO4) particles synthesized in subcritical and supercritical water. J Supercrit Fluids 35:83–90

    Article  CAS  Google Scholar 

  50. Li LM, Lu XP, Chen W, Fang HS (2019) A new strategy to hydrothermally synthesize olivine phosphates. Chem Commun 55:12092–12095

    Article  CAS  Google Scholar 

  51. Liu H, Li C, Zhang HP, Fu LJ, Wu YP, Wu HQ (2006) Kinetic study on LiFePO4/C nanocomposites synthesized by solid state technique. J Power Sources 159:717–720

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (grant numbers 51874155 and 51664031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haisheng Fang.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, X., Chen, W. & Fang, H. Hydrothermal synthesis of olivine phosphates in the presence of excess phosphorus: a case study of LiMn0.8Fe0.19Mg0.01PO4. Ionics 27, 3259–3269 (2021). https://doi.org/10.1007/s11581-021-04113-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04113-x

Keywords

Navigation