Skip to main content
Log in

Effects of surfactant-assisted synthesis Fe3(PO4)2∙8H2O and its purity and morphology on the performance of LiFePO4/C cathode materials

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The synthesis of high purity and crystallinity Fe3(PO4)2·8H2O precursor by polyvinyl pyrrolidone (PVP)–assisted co-precipitation method is reported, and the morphology-controlled tiny and uniform primary particles material has also been obtained. Moreover, the fore-mentioned Fe3(PO4)2∙8H2O was used to synthesize LiFePO4/C via carbothermal reduction. All the materials were systematically characterized by various analytical, spectroscopic, and imaging techniques. Fe3(PO4)2∙8H2O exhibits stronger affinities within primary particles and homogeneity, attributed to PVP, which can greatly improve the properties of LiFePO4/C. The resulting high purity Fe3(PO4)2∙8H2O gave highly crystalline of LiFePO4/C. In addition, LiFePO4/C prepared with PVP demonstrated excellent electrochemical performance of initial discharge capacities at 0.2 C, 0.5 C, 1 C, 2 C, and 5 C are 163.4, 160.9, 155.1, 146.2, and 126.5 mAh g−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Blomgren GE (2017) The development and future of lithium ion batteries. J Electrochem Soc 164:A5019–A5025

    Article  CAS  Google Scholar 

  2. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  3. Paolella A, Bertonib G, Hovington P, Feng Z, Flacau R, Prato M, Colombo M, Marras S, Manna L, Turner S, Tendeloo GV, Guerfi A, Demopoulos GP, Zaghib K (2015) Cation exchange mediated elimination of the Fe-antisites in the hydrothermal synthesis of LiFePO4. Nano Energy 16:256–267

    Article  CAS  Google Scholar 

  4. Sun J, Li Z, Ren X, Wang L, Liang G (2019) High volumetric energy density of LiFePO4/C microspheres based on xylitol-polyvinyl alcohol complex carbon sources. J Alloys Compd 773:788–795

    Article  CAS  Google Scholar 

  5. Yang Z, Dai Y, Wang S, Yu J (2016) How to make lithium iron phosphate better: a review exploring classical modification approaches in-depth and proposing future optimization methods. J Mater Chem A 4:18210–18222

    Article  CAS  Google Scholar 

  6. Wang P, Zhang G, Li Z, Sheng W, Zhang Y, Gu J, Zheng X, Cao F (2016) Improved electrochemical performance of LiFePO4@N-doped carbon nanocomposites using polybenzoxazine as nitrogen and carbon sources. ACS Appl Mater Interfaces 8:26908–26915

    Article  CAS  Google Scholar 

  7. Ilango P, Gnanamuthu R, Jo Y, Lee C (2016) Design and electrochemical investigation of a novel graphene oxide-silver joint conductive agent on LiFePO4 cathodes in rechargeable lithium-ion batteries. J Ind Eng Chem 36:121–124

    Article  CAS  Google Scholar 

  8. Johnson ID, Lubke M, Wu OY, Makwana NM, Smales GJ, Islam HU, Dedigama RY, Gruar RI, Tighe CJ, Scanlon DO, Cora F, Brett DJL, Shearing PR, Darr JA (2016) Pilot-scale continuous synthesis of a vanadium-doped LiFePO4/C nanocomposite high-rate cathodes for lithium-ion batteries. J Power Sources 302:410–418

    Article  CAS  Google Scholar 

  9. Naik A, Zhou J, Gao C, Liu GZ, Wang L (2016) Rapid and facile synthesis of Mn doped porous LiFePO4/C from iron carbonyl complex. J Energy Inst 89:21–29

    Article  CAS  Google Scholar 

  10. Zhang C, Liang Y, Yao L, Qiu Y (2015) Effect of thermal treatment on the properties of electrospun LiFePO4-carbon nanofiber composite cathode materials for lithium-ion batteries. J Alloys Compd 627:91–100

    Article  CAS  Google Scholar 

  11. Wang B, Liu A, Al Abdulla W, Wang D, Zhao X (2015) Desired crystal oriented LiFePO4 nanoplatelets in situ anchored on a graphene cross-linked conductive network for fast lithium storage. Nanoscale 7:8819–8828

    Article  CAS  Google Scholar 

  12. Wang Q, Peng D, Chen Y, Xia X, Liu H, He Y, Ma Q (2018) A facile surfactant-assisted self-assembly of LiFePO4/graphene composites with improved rate performance for lithium ion batteries. J Electroanal Chem 818:68–75

    Article  CAS  Google Scholar 

  13. Oh S, Huang Z, Zhang B, Yu Y, He Y, Kim J (2012) Low temperature synthesis of graphene-wrapped LiFePO4 nanorod cathodes by the polyol method. J Mater Chem 22:17215–17221

    Article  CAS  Google Scholar 

  14. Chen C, Liu G, Wang Y, Li J, Liu H (2013) Preparation and electrochemical properties of LiFePO4/C nanocomposite using FePO4·2H2O nanoparticles by introduction of Fe3(PO4)2·8H2O at low cost. J Electrochim Acta 113:464–469

    Article  CAS  Google Scholar 

  15. Li M, Sun L, Sun K, Wang RS, Xie HM (2013) An optimum route to prepare FePO4·2H2O and its use as an iron source to synthesize LiFePO4. J Sci China Chem 56:576–582

    Article  CAS  Google Scholar 

  16. Ren JX, Hu YK, Guo XD, Yang T, Zhong BH, Liu H (2014) Vacuum-assisted synthesis of Fe3(PO4)2∙8H2O and its influence on structure, morphology and electrochemical performance of LiFePO4/C. Acta Physico-Chim Sin 30:866–872

    Article  CAS  Google Scholar 

  17. Li S, Liu X, Mi R, Liu H, Li Y, Lau W, Mei J (2014) A facile route to modify ferrous phosphate and its use as an iron-containing resource for LiFePO4 via a polyol process. J ACS Appl Mater Interfaces 6:9449–9457

    Article  CAS  Google Scholar 

  18. QIN X, Yang G, Ma F, Cai F (2014) Synthesis and properties of Nano-LiFePO4/C composites. Chin J Mater Chem Res 28:949–954

    CAS  Google Scholar 

  19. Liu X, Feng T, Chen S, Wei H (2016) Effects of different templates on electrochemical performance of LiFePO4/C prepared by supercritical hydrothermal method. Int J Electrochem Sci 11:2276–2283

    CAS  Google Scholar 

  20. Fan C, Li Q, Chen S, Fan J, Wen Z, Zeng T, Zhang X, Han S (2016) Poly(vinylpylrrolidone) as surfactant in the sol-gel preparation of lithium iron phosphate/carbon cathodes for lithium-ion batteries. Energy Technol 4:1–8

    Article  CAS  Google Scholar 

  21. Wang F, Fang ZW, Zhang Y (2016) Polyethylene glycol-induced growth of LiFePO4 platelets with preferentially exposed (010) plane as a cathode material for lithium ion battery. J Electroanal Chem 775:110–115

    Article  CAS  Google Scholar 

  22. Zhang N, Lin L, Xu ZM (2014) Effect of synthesis temperature, time, and carbon content on the properties and lithium-ion diffusion of LiFePO4/C composites. J Solid State Electrochem 18:2401–2410

    Article  CAS  Google Scholar 

  23. Guo J, Wang Y, Zhao M (2018) 3D flower-like ferrous (II) phosphate nanostructures as peroxidase mimetics for sensitive colorimetric detection of hydrogen peroxide and glucose at nanomolar level. Talanta 39–79

  24. Francesco C, Capitelli G, Ghiara M, Rossi M (2012) Crystal-chemical investigation of Fe3(PO4)2·8H2O vivianite minerals. Z Kristallogr 227:92–101

    Article  Google Scholar 

  25. Liu TF, Zhao L, Wang DL, Zhu JS, Wang B, Guo CF (2014) Carbon-coated single-crystalline LiFePO4 nanocomposites for high-power Li-ion batteries: the impact of minimization of the precursor particle size. RSC Adv 4:10067–10075

    Article  CAS  Google Scholar 

  26. Sun J, Ren X, Li Z, Tian W, Zheng Y, Wang L, Liang G (2019) Effect of poly (acrylic acid)/poly (vinyl alcohol) blending binder on electrochemical performance for lithium iron phosphate cathodes. J Alloys Compd 783:379–386

    Article  CAS  Google Scholar 

  27. Liu Y, Zhang J, Li Y, Hu Y, Li W, Zhu M, Hu P, Chou S (2017) G, Wang, Solvothermal synthesis of a hollow micro-sphere LiFePO4/C composite with a porous interior structure as a cathode material for lithium ion batteries. Nanomaterials 7:368

    Article  Google Scholar 

  28. Bao L, Li L, Xu G, Wang J, Zhao R, Shen G, Han G, Zhou S (2016) Olivine LiFePO4 nanocrystallites embedded in carbon-coating matrix for high power Li-ion batteries. Electrochim Acta 222:685–692

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the State Natural Science Foundation of Hebei Province (grant number E2015202356).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangchuan Liang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Tian, W., Cao, J. et al. Effects of surfactant-assisted synthesis Fe3(PO4)2∙8H2O and its purity and morphology on the performance of LiFePO4/C cathode materials. Ionics 26, 5445–5453 (2020). https://doi.org/10.1007/s11581-020-03698-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03698-z

Keywords

Navigation