Skip to main content
Log in

Influence of synthesis parameters on the properties of FePO4·2H2O used for the precursor of LiFePO4 cathode material

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A series of FePO4·2H2O particles were prepared via rapid precipitation method for process parameters optimizing. The influences of surfactant type, its amount, aging time, and ultrasound time were systematically investigated. The obtained FePO4·2H2O particles were characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM), thermogravimetric-differential scanning calorimetry (TG-DSC), Fourier transform infrared spectroscopy (FTIR), and iron–phosphorus ratio (n(Fe):n(P)). Results show that surfactant, aging time, and ultrasound time have significant effects on the agglomeration and morphology of FePO4·2H2O particles. The best conditions for preparing FePO4·2H2O particles with good dispersity are surfactant CTAB with adding 1.5% of the iron powder mass, 4 h aging, and 60 min of ultrasonic treatment, respectively. This work suggests that the optimized rapid precipitation method is a promising method to synthesize FePO4·2H2O used in industrialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Huang Y, Goodenough JB (2008) High-rate LiFePO4 lithium rechargeable battery promoted by electrochemically active polymers [J]. Chem Mater 20:7237–7241

    Article  CAS  Google Scholar 

  2. Wang Y, He P, Zhou H (2011) Olivine LiFePO4: development and future [J], Energy&Environmental. Science 4:805–817

    CAS  Google Scholar 

  3. Zaghib K, Mauger A, Julien CM (2012) Overview of olivines in lithium batteries for green transportation and energy storage [J]. J Solid State Electrochim 16:835–845

    Article  CAS  Google Scholar 

  4. Wang J, Sun X (2012) Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries [J]. Energy Environ Sci 5:5163–5185

    Article  CAS  Google Scholar 

  5. He L, Xu S, Zhao Z et al (2017) Suppressing the formation of Fe2P: Thermodynamic study on the phase diagram and phase transformation for LiFePO4 synthesis [J]. Energy 134:962–967

    Article  CAS  Google Scholar 

  6. Song Y, Zhao T, He L et al (2019) A promising approach for directly extracting lithium from α-spodumene by alkaline digestion and precipitation as phosphate [J]. Hydrometallurgy 189:105141

    Article  CAS  Google Scholar 

  7. Zhang K, Li Y, Wang Y et al (2020) Enhanced electrochemical properties of iron oxalate with more stable Li+ ions diffusion channels by controlling polymorphic structure [J]. Chem Eng J 384:123281

    Article  CAS  Google Scholar 

  8. Shi Z, Huang M, Huai Y, Lin Z, Yang K, Hu X, Deng Z (2011) Synthesis of LiFePO4/C cathode material from ferric oxide and organic lithium salts [J]. Electrochim Acta 56:4263–4267

    Article  CAS  Google Scholar 

  9. Wang YP, Li HH, Chen M et al (2017) Synthesis and electrochemical performance of LiFePO4/C cathode materials from Fe2O3 for high-power lithium-ion batteries [J]. Ionics 23(2):377–384

    Article  CAS  Google Scholar 

  10. Patete JM, Scofield ME, Volkov V, Koenigsmann C, Zhang Y, Marschilok AC, Wang X, Bai J, Han J, Wang L, Wang F, Zhu Y, Graetz JA, Wong SS (2015) Ambient synthesis, characterization, and electrochemical activity of LiFePO4 nanomaterials derived from iron phosphate intermediates [J]. Nano Res 8:2573–2594

    Article  CAS  Google Scholar 

  11. Ke X, Xiao RG, Liao X et al (2018) LiFePO4/C cathode material prepared with sphere mesoporous-FePO4 as precursors for lithium-ion batteries [J]. J Electroanal Chem 820:18–23

    Article  CAS  Google Scholar 

  12. Lv Y, Long Y, Su J, Lv X, Wen Y (2014) Synthesis of bowl-like mesoporous LiFePO4/C composites as cathode materials for lithium ion batteries [J]. Electrochim Acta 119:155–163

    Article  CAS  Google Scholar 

  13. Liu W, Liu Q, Qin M, Xu L, Deng J (2017) Inexpensive and green synthesis of multi-doped LiFePO4/C composites for lithium-ion batteries [J]. Electrochim Acta 257:82–88

    Article  CAS  Google Scholar 

  14. Peng W, Jiao L, Gao H, Qi Z, Wang Q, Du H, Si Y, Wang Y, Yuan H (2011) A novel sol-gel method based on FePO4·2H2O to synthesize sub-micrometer structured LiFePO4/C cathode material [J]. J Power Sources 196(5):2841–2847

    Article  CAS  Google Scholar 

  15. Zhu CB, Gu L, Suo LM et al (2014) Size-dependent staging and phase transition in LiFePO4/FePO4 [J]. Adv Funct Mater 24(3):312–318

    Article  CAS  Google Scholar 

  16. Allen JL, Jow TR, Wolfenstine J (2007) Kinetic study of the electrochemical FePO4 to LiFePO4 phase transition [J]. Chem Mater 19(8):2108–2111

    Article  CAS  Google Scholar 

  17. Yuan J (2012) Preparation of different crystal forms of iron phosphate and the conversion between lithium iron phosphate [D]. Master degree thesis, Zhengzhou University

  18. Prosini PP, Lisi M, Scaccia S, Carewska M, Cardellini F, Pasquali M (2002) Synthesis and Characterization of amorphous hydrated FePO4 and its electrode performance in lithium batteries [J]. J Electrochem Soc 149:A297

    Article  CAS  Google Scholar 

  19. Santos-Peña J, Soudan P, Areán CO, Palomino GT, Franger S (2006) Electrochemical properties of mesoporous iron phosphate in lithium batteries [J]. J Solid State Electrochem 10: 1–9 

  20. Qian LC, Xia Y, Zhang WK et al (2012) Electrochemical synthesis of mesoporous FePO4 nanoparticles for fabricating high performance LiFePO4/C cathode materials [J]. Microporous Mesoporous Mater 152:128–133

    Article  CAS  Google Scholar 

  21. Wu KP, Hu GR, Du K et al (2015) Improved electrochemical properties of LiFePO4/graphene/carbon composite synthesized from FePO4·2H2O/graphene oxide [J]. Ceram Int 41(10):13867–13871

    Article  CAS  Google Scholar 

  22. Chang JY, Zhang JY, Feng T (2007) Preparation and performance test of FePO4 precursor for high density LiFePO4 [J]. Yellow River Conservancy Technology Institute 23(3):51–54

    Google Scholar 

  23. Jiang DP, Zhang XJ, Lu SG et al (2011) Research on process of preparation and performance of iron phosphate as precursor of lithium iron phosphate [J]. Rare Metals 30(1):52–54

    Article  CAS  Google Scholar 

  24. Boonchom BJ, Puttawong S (2010) Thermodynamics and kinetics of the dehydration reaction of FePO4·2H2O [J]. Phys B Condens Matter 405(9):2350–2355

    Article  CAS  Google Scholar 

  25. Song YN, Zavalij PY, Suzuki M et al (2002) New iron(III) phosphate phases: crystal structure and electrochemical and magnetic properties [J]. Inorg Chem 41(22):5778–5786

    Article  CAS  Google Scholar 

  26. Zhu YM, Tang SZ, Shi HH et al (2014) Synthesis of FePO4·xH2O for fabricating sub-micrometer structured LiFePO4/C by a coprecipitation method [J]. Ceram Int 40(2):2685–2690

    Article  CAS  Google Scholar 

  27. Croce F, D’Epifanio A, Reale P et al (2003) Ruthenium oxide-added quartz iron phosphate as a new intercalation electrode in rechargeable lithium cells [J]. J Electrochem Soc 150(5):A576–A581

    Article  CAS  Google Scholar 

  28. Yin Y, Zhang H, Wu P, Zhou B, Cai C (2010) Iron phosphate nanostructures synthesized by microwave method and their applications in biosensing [J]. Nanotechnology. 425504:21

    Google Scholar 

  29. Xu YB, Lu YJ, Yin P et al (2008) A versatile method for preparing FePO4 and study on its electrode performance in lithium ion batteries [J]. J Mater Process Technol 204(1-3):513–519

    Article  CAS  Google Scholar 

  30. Okawa H, Yabuki J, Kawamura Y et al (2008) Synthesis of FePO4 cathode material for lithium ion batteries by a sonochemical method [J]. Mater Res Bull 43(5):1203–1208

    Article  CAS  Google Scholar 

  31. Ye H (2012) Preparation and characterization FePO4 and LiFePO4 nanosheets [D]. Master degree thesis, Nanchang University

  32. Parra JG, Iza P, Dominguez H et al (2020) Effect of Triton X-100 surfactant on the interfacial activity of ionic surfactants SDS, CTAB and SDBS at the air/water interface: a study using molecular dynamic simulations [J]. Colloids Surf A Physicochem Eng Asp 125284: 603

  33. Milankovic AM, Pivac B, Furic K et al (1997) Structural study of iron phosphate glasses [J]. Phys Chem Glasses 38(2):74–78

    Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (Grant No. 51364021), the Project of Natural Science Foundation of Yunnan Province (Grant No. 2018HB012), and the Program for Innovative Research Team in the University of Ministry of Education of China (No. IRT_17R48) are gratefully acknowledged by the authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Meimei or Yao Yaochun.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yongjia, L., Yin, L., Keyu, Z. et al. Influence of synthesis parameters on the properties of FePO4·2H2O used for the precursor of LiFePO4 cathode material. Ionics 27, 983–991 (2021). https://doi.org/10.1007/s11581-020-03864-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03864-3

Keywords

Navigation