Skip to main content
Log in

Electrical and dielectric properties study of CaZrO3-CaTiO3 composite system by impedance spectroscopy

  • Original VPaper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

CaZrO3 mono-phase and (1-x)CaZrO3-xCaTiO3 composite systems, where x = 0.2, 0.25, and 0.3, were synthesized by a conventional solid-state method. XRD patterns of the synthesized composites reveal the formation of both phases, and no secondary phase was detected. The analysis of the internal stress in the composites systems by the William-Hall equation indicates that tensile stress is applied to the CaZrO3 grains, while compressive stress is applied to CaTiO3 grains. TEM analyses show that the CaTiO3 grain is surrounded by CaZrO3 grains, confirming the presence of the CaZrO3/CaTiO3 hetero-interfaces and confirming the results obtained by the William-Hall equation. Impedance spectra were well modelled by introducing electrical equivalent circuits. The obtained results show that the incorporation of the CaTiO3 phase favors the ionic conductivity in the composite and that the 0.75CaZrO3-0.25CaTiO3 composite exhibits the highest oxide ion conductivity among all the samples, where its total conductivity value is about 1.23 × 10−4 s cm−1 at 500 °C, which is higher than that of the CZO mono-phase (1.01 × 10−6 s cm−1 at 500 °C), and than that of the CTO mono-phase (2.1 × 10−7s cm−1 at 500 °C). The conductivity enhancement was explained based on the variation of the hetero-interface CaZrO3/CaTiO3 surface area. Furthermore, the frequency and temperature dependence of dielectric constant (\( {\varepsilon}_r^{\prime } \)) and dielectric loss tangent (tanδ) were investigated in detail and the dielectric response improvement was attributed to the improvement of the space charge polarization in the hetero-interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Vieira BM, Nadaleti WC, Almeida SR, Eliker C, Cava SS, Raubach CW, de Sousa VC (2019) Chemical synthesis of materials based on calcium zirconate for solid oxide fuel cells (SOFC). Environ Prog 38:e13243. https://doi.org/10.1002/ep.13243

    Article  CAS  Google Scholar 

  2. Bouwmeester HJM, Burggraaf AJ, Gellings PJ, Bouwmeester HJM (eds) (1997) The CRC handbook of solid state electrochemistry. CRC Press, Inc., Boca Raton, p 481

    Google Scholar 

  3. Iwahara H, Esaka T, Uchida H, Maeda N (1981) Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ionics 3-4:363–359. https://doi.org/10.1016/0167-2738(81)90113-2

    Article  Google Scholar 

  4. Janke D (1982) Oxygen probes based on calcia-doped hafnia or calcium zirconate for use in metallic melts. Metall Trans B 13:235–227. https://doi.org/10.1007/BF02664579

    Article  Google Scholar 

  5. Prasanth CS, Kumar HP, Pazhani R, Solomon S (2008) Synthesis characterization and microwave dielectric properties of nanocrystalline CaZrO3 ceramics. J Alloys Compd 464:309–306. https://doi.org/10.1016/j.jallcom.2007.09.098

    Article  CAS  Google Scholar 

  6. Hwang SC, Choi GM (2008) The mixed ionic and electronic conductivity of CaZrO3 with cation nonstoichiometry and oxygen partial pressure. Solid State Ionics 179:1042–1045. https://doi.org/10.1016/j.ssi.2007.11.034

    Article  CAS  Google Scholar 

  7. Hwang SC, Choi GM (2005) The effect of cation nonstoichiometry on the electrical conductivity of CaZrO3. J Eur Ceram Soc 25:2612–2609. https://doi.org/10.1016/j.jeurceramsoc.2005.03.111

    Article  CAS  Google Scholar 

  8. Lyagaeva J, Danilov N, Korona D, Farlenkov A, Medvedev D, Demin A, Animitsa I, Tsiakarasa P (2017) Improved ceramic and electrical properties of CaZrO3-based proton conducting materials prepared by a new convenient combustion synthesis method. Ceram Int 43:7192–7184. https://doi.org/10.1016/j.ceramint.2017.03.006

    Article  CAS  Google Scholar 

  9. Huang W, Li Y, Li H, Ding Y, Ma B (2016) Preparation and ionic conduction of CaZr1-xScO3. Ceram Int 42:13410–13404. https://doi.org/10.1016/j.ceramint.2016.05.117

    Article  CAS  Google Scholar 

  10. Bao J, Ohno H, Kurita N, Okuyama Y, Fukatsu N (2011) Proton conduction in Al-doped CaZrO3. Electrochim Act 56:1068–1062. https://doi.org/10.1016/j.electacta.2010.10.098

    Article  CAS  Google Scholar 

  11. Wang CZ, Xu XG, Yu HL, Wen YX, Zhao KF (1988) A study of the solid electrolyte Y2O3-doped CaZrO3. Solid State Ionics 28-30:545–542. https://doi.org/10.1016/S0167-2738(88)80099-7

    Article  Google Scholar 

  12. Wang X, Liu T, Yu J, Mo Y, Yi M, Li J, Li L (2018) Preparation and electrical property of CaZr0.7M0.3O3 (M=Fe, Cr and Co) dense diffusion barrier for application in limiting current oxygen sensor. Sensors Actuators 266:462–455. https://doi.org/10.1016/j.snb.2018.03.097

    Article  CAS  Google Scholar 

  13. Yin S, Zeng Y, Cai T, Li C, Chen X, Cao L (2014) Solvothermal synthesis of La9.33Si6O26 nanocrystals and their enhancing impacts on sintering and oxygen ion conductivity of Sm0.2Ce0.8O1.9/La9.33Si6O26 composite electrolytes. Int J Hydrog Energy 39:6295–6306. https://doi.org/10.1016/j.ijhydene.2014.02.041

    Article  CAS  Google Scholar 

  14. Yang F, Zhao X, Ping X (2010) Electrical properties of YSZ/Al2O3 composite and YSZ/Al2O3 interface studied by impedance spectroscopy and finite element modelling. Solid State Ionics 181:783–789. https://doi.org/10.1016/j.ssi.2010.04.036

    Article  CAS  Google Scholar 

  15. Wong YJ, Hassan J, Hashim M (2013) Dielectric properties, impedance analysis and modulus behavior of CaTiO3 ceramic prepared by solid state reaction. J Alloys Compd 571:138–144. https://doi.org/10.1016/j.jallcom.2013.03.123

    Article  CAS  Google Scholar 

  16. Oliveira LS, Gouveia DX, Silva MAS, Sombra ASB (2015) Study of the performance of dielectric resonator antennas based on the matrix composite of Al2O3 – CaTiO3. Microw Opt Techn Let 57:963–969. https://doi.org/10.1002/mop.28999

    Article  Google Scholar 

  17. Rodrigueg-carvajal J (2009) FULLPROF 2000: a program for Rietveld, profile matching and integrated intensity refinements for X-ray and neutron data, version 1.6; Laboratorie Leon, Brillounin, Gifsuryvette, France

  18. Sagar ES, Mahesh LM, Yukiko Y, Xiaoxi L (2014) Akimitsu M. Phys Chem Chem Phys 16:2347–2357

    Article  Google Scholar 

  19. Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1:22–31

    Article  CAS  Google Scholar 

  20. Mathews MD, Mirza EB, Momin AC (1991) High temperature X-ray diffractometric studies of CaZrO3, SrZrO3 and BaZrO3. J Mat Sci Lett 10:305–306

    Article  CAS  Google Scholar 

  21. Tang B, Luo F, Zhou D, Yuan Y, Zhang S (2017) Effects of CaTiO3 loading on the properties of PTFE/TiO2 composites. J Mater Sci 5:45–52. https://doi.org/10.4236/msce.2017.57006

    Article  CAS  Google Scholar 

  22. Sil S, Datta J, Das M, Jana R, Halder S, Biswas A, Sanyal D, Ray PP (2018) Bias dependent conduction and relaxation mechanism study of Cu5FeS4 film and its significance in signal transport network. J Mater Sci Mater Electron 29:5014–5024. https://doi.org/10.1007/s10854-017-8463-4

    Article  CAS  Google Scholar 

  23. Lasia A (1999) Electrochemical impedance spectroscopy and it’s applications. In: Conway JOM, Bockris RE (ed) Modern aspects of electrochemistry, New York, pp. 143-248.

  24. Jorcin JB, Orazem ME, Pebere N, Tribollet B (2006) CPE analysis by local electrochemical impedance spectroscopy. Electrochim Acta 51:1473–1479. https://doi.org/10.1016/j.electacta.2005.02.128

    Article  CAS  Google Scholar 

  25. Morrison FD, Jung DJ, Scott JF (2007) Constant-phase-element (CPE) modeling of ferroelectric random-access memory lead zirconate-titanate (PZT) capacitors. J Appl Phys 101:094112. https://doi.org/10.1063/1.2723194

    Article  CAS  Google Scholar 

  26. Rafiq MA, Costa ME, Tkach A, Vilarinho PM (2015) Impedance analysis and conduction mechanisms of lead free potassium sodium niobate (KNN) single crystals and polycrystals: a comparison study. Cryst Growth Des 15:1289–1294. https://doi.org/10.1021/cg5016884

    Article  CAS  Google Scholar 

  27. Xu Q, Lanagan MT, Luo W, Zhang L, Xie J, Hao H, Cao M, Yao Z, Liu H (2016) Electrical properties and relaxation behavior of Bi0.5Na0.5TiO3-BaTiO3 ceramics modified with NaNbO3. J Eur Ceram Soc 36:2469–2477. https://doi.org/10.1016/j.jeurceramsoc.2016.03.011

    Article  CAS  Google Scholar 

  28. Scherban T, Nowick AS (1989) Bulk protonic conduction in Yb-doped SrCeO3. Solid State Ionics 35:189–194. https://doi.org/10.1016/0167-2738(89)90029-5

    Article  Google Scholar 

  29. Kilner JA, Brook RJ (1982) A study of oxygen ion conductivity in doped non-stoichiometric oxides. Solid State Ionics 6:237–252. https://doi.org/10.1016/0167-2738(82)90045-5

    Article  CAS  Google Scholar 

  30. Wang JJ, Bayer TJM, Wang R, Carter JJ, Randall CA, Chen LQ (2017) Unexpected significant increase in bulk conductivity of a dielectric arising from charge injection. Appl Phys Lett 110:262902. https://doi.org/10.1063/1.4990677

    Article  CAS  Google Scholar 

  31. Davidson A, Tinkham M (1976) Phenomenological equations for the electrical conductivity of microscopically inhomogeneous materials. Phys Rev B 13:3261–3267. https://doi.org/10.1103/PhysRevB.13.3261

    Article  CAS  Google Scholar 

  32. Gaikwad AS, Kadam RH, Shirsath SE, Wadgane SR, Shah J, Kotnala RK, Kadam AB (2019) Surprisingly high magneto-electric coupling in cubic Co0.7Fe2.3O4-SrTiO3 nanocomposites. J. Alloys Compd 773:564–570. https://doi.org/10.1016/j.jallcom.2018.09.209

    Article  CAS  Google Scholar 

  33. Hippel V, Robert A (1954) Dielectric and waves. Other fields of physics. Wiley, New York, p 296

    Google Scholar 

  34. Joshi JH, Kanchan DK, Joshi MJ, Jethva HO, Parikh KD (2017) Dielectric relaxation, complex impedance and modulus spectroscopic studies of mix phase rod like cobalt sulfide nanoparticles. Mater Res Bull 93:63–73. https://doi.org/10.1016/j.materresbull.2017.04.013

    Article  CAS  Google Scholar 

  35. Zhou HY, Liu XQ, Zhu XL, Chen XM (2017) CaTiO3 linear dielectric ceramics with greatly enhanced dielectric strength and energy storage density. J Am Ceram Soc 101:1999–2008. https://doi.org/10.1111/jace.15371

    Article  CAS  Google Scholar 

  36. Zhou Y, Wang H, Wang L, Yu K, Lin Z, He L, Bai Y (2012) Fabrication and characterization of aluminum nitride polymer matrix composites with high thermal conductivity and low dielectric constant for electronic packaging. Mater Sci Eng 177:892–896. https://doi.org/10.1016/j.mseb.2012.03.056

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Ben Salem.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hkiri, K., Salem, M.B., Othmani, A. et al. Electrical and dielectric properties study of CaZrO3-CaTiO3 composite system by impedance spectroscopy. Ionics 26, 5099–5111 (2020). https://doi.org/10.1007/s11581-020-03596-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03596-4

Keywords

Navigation