Skip to main content
Log in

Electrodeposited Co-Mn oxide composite electrodes for rechargeable Zn-air battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Porous manganese cobalt oxide (MCO) films were prepared directly on a conductive stainless steel (SS) mesh substrate via electrodeposition and an annealing treatment as composite air electrodes. The electrodeposition time ratio markedly influenced the surface morphological and electrochemical catalytic activities of MCO/SS electrodes. The sample 04 (− 0.8 V for 480 s followed by − 0.9 V for 240 s and annealed at 400 °C for 2 h) exhibited the highest reduction current among all electrodes. The electrochemical catalytic activity of the sample 04 as the air electrode for rechargeable zinc–air batteries was evaluated using galvanostatic charge and discharge cycling measurements in a solution of 6 M KOH. After 1000 cycles, sample 04 exhibited excellent cycling stability, with an overall potential gap of 0.75 V. The excellent performance of MCO/SS electrode in terms of stability and overall potential gap might be due to the ratio of Co oxide and Mn oxide, and its porous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li Y, Dai H (2014) Recent advances in zinc–air batteries. Chem Soc Rev 43(15):5257–5275

    Article  CAS  PubMed  Google Scholar 

  2. Cao R, Lee JS, Liu M, Cho J (2012) Recent progress in non-precious catalysts for metal-air batteries. Adv Energy Mater 2(7):816–829

    Article  CAS  Google Scholar 

  3. Jiang F, Peng P (2016) Elucidating the performance limitations of lithium-ion batteries due to species and charge transport through five characteristic parameters. Sci Rep 6:32639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Posada JOG, Rennie AJ, Villar SP, Martins VL, Marinaccio J, Barnes A, Glover CF, Worsley DA, Hall PJ (2017) Aqueous batteries as grid scale energy storage solutions. Renew Sust Energ Rev 68:1174–1182

    Article  CAS  Google Scholar 

  5. Lee JS, Tai Kim S, Cao R, Choi NS, Liu M, Lee KT, Cho J (2011) Metal–air batteries with high energy density: Li–air versus Zn–air. Adv Energy Mater 1(1):34–50

    Article  CAS  Google Scholar 

  6. Sotelo JL, Rodríguez AR, Mateos MM, Hernández SD, Torrellas SA, Rodríguez JG (2012) Adsorption of pharmaceutical compounds and an endocrine disruptor from aqueous solutions by carbon materials. J Environ Sci Health B 47(7):640–652

    Article  CAS  PubMed  Google Scholar 

  7. Tiller JC, Liao C-J, Lewis K, Klibanov AM (2001) Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci 98(11):5981–5985

    Article  CAS  PubMed  Google Scholar 

  8. Cao X, Wu J, Jin C, Tian J, Strasser P, Yang R (2015) MnCo2O4 anchored on P-doped hierarchical porous carbon as an electrocatalyst for high-performance rechargeable Li–O2 batteries. ACS Catal 5(8):4890–4896

    Article  CAS  Google Scholar 

  9. Han X, Zhang T, Du J, Cheng F, Chen J (2013) Porous calcium–manganese oxide microspheres for electrocatalytic oxygen reduction with high activity. Chem Sci 4(1):368–376

    Article  CAS  Google Scholar 

  10. Liu X, Park M, Kim MG, Gupta S, Wang X, Wu G, Cho J (2016) High-performance non-spinel cobalt–manganese mixed oxide-based bifunctional electrocatalysts for rechargeable zinc–air batteries. Nano Energy 20:315–325

    Article  CAS  Google Scholar 

  11. Ge X, Liu Y, Goh FT, Hor TA, Zong Y, Xiao P, Zhang Z, Lim SH, Li B, Wang X (2014) Dual-phase spinel MnCo2O4 and spinel MnCo2O4/nanocarbon hybrids for electrocatalytic oxygen reduction and evolution. ACS Appl Mater Interfaces 6(15):12684–12691

    Article  CAS  PubMed  Google Scholar 

  12. Prabu M, Ramakrishnan P, Nara H, Momma T, Osaka T, Shanmugam S (2014) Zinc–air battery: understanding the structure and morphology changes of graphene-supported CoMn2O4 bifunctional catalysts under practical rechargeable conditions. ACS Appl Mater Interfaces 6(19):16545–16555

    Article  CAS  PubMed  Google Scholar 

  13. Davari E, Johnson AD, Mittal A, Xiong M, Ivey DG (2016) Manganese-cobalt mixed oxide film as a bifunctional catalyst for rechargeable zinc-air batteries. Electrochim Acta 211:735–743

    Article  CAS  Google Scholar 

  14. Lee Y-C, Peng P-Y, Chang W-S, Huang C-M (2014) Hierarchical meso-macroporous LaMnO3 electrode material for rechargeable zinc–air batteries. J Taiwan Inst Chem Eng 45(5):2334–2339

    Article  CAS  Google Scholar 

  15. Rios E, Gautier J-L, Poillerat G, Chartier P (1998) Mixed valency spinel oxides of transition metals and electrocatalysis: case of the MnxCo3− xO4 system. Electrochim Acta 44(8–9):1491–1497

    Article  CAS  Google Scholar 

  16. Su H-Y, Gorlin Y, Man IC, Calle-Vallejo F, Nørskov JK, Jaramillo TF, Rossmeisl J (2012) Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis. Phys Chem Chem Phys 14(40):14010–14022

    Article  CAS  PubMed  Google Scholar 

  17. Wang Y, Guo CX, Liu J, Chen T, Yang H, Li CM (2011) CeO 2 nanoparticles/graphene nanocomposite-based high performance supercapacitor. Dalton Trans 40(24):6388–6391

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guan-Ting Pan or Chao-Ming Huang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 1148 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, C.P.P., Yang, T.CK., Chong, S. et al. Electrodeposited Co-Mn oxide composite electrodes for rechargeable Zn-air battery. Ionics 25, 1689–1698 (2019). https://doi.org/10.1007/s11581-019-02913-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-02913-w

Keywords

Navigation