Skip to main content

Advertisement

Log in

Visual surround suppression at the neural and perceptual levels

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Surround suppression was initially identified as a phenomenon at the neural level in which stimuli outside the neuron’s receptive field alone cannot activate responses but can modulate neural responses to stimuli covered inside the receptive field. Subsequent studies showed that surround suppression is not only a critical property of neurons across species and brain areas but also has been found in visual perceptions. More importantly, surround suppression varies across individuals and shows significant differences between normal controls and patients with certain mental disorders. Here, we combined results from related literature and summarized the findings derived from physiological and psychophysical evidence. We first outline the basic properties of surround suppression in the visual system and perceptions. Then, we mainly summarize the differences in perceptual surround suppression among different human subjects. Our review suggests that there is no consensus regarding whether the strength of perceptual surround suppression could be used as an effective index to distinguish particular populations. Then, we summarized the similar mechanisms for surround suppression and cognitive impairments to further explore the potential clinical applications of surround suppression. A clearer understanding of the mechanisms of surround suppression in neural responses and perceptions is necessary for facilitating its clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamek P, Langova V, Horacek J (2022) Early-stage visual perception impairment in schizophrenia, bottom-up and back again. Npj Schizophr 8(1):27

    Article  Google Scholar 

  • Adamowicz JK (1976) Visual short-term memory and aging. J Gerontol 31(1):39–46

    Article  CAS  PubMed  Google Scholar 

  • Adesnik H, Bruns W, Taniguchi H, Huang ZJ, Scanziani M (2012) A neural circuit for spatial summation in visual cortex. Nature 490(7419):226–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adrian J, Moessinger M, Charles A, Postal V (2019) Exploring the contribution of executive functions to on-road driving performance during aging: a latent variable analysis. Accid Anal Prev 127:96–109

    Article  PubMed  Google Scholar 

  • Alitto HJ, Usrey WM (2008) Origin and dynamics of extraclassical suppression in the lateral geniculate nucleus of the macaque monkey. Neuron 57(1):135–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alitto HJ, Usrey WM (2015) Surround suppression and temporal processing of visual signals. J Neurophysiol 113(7):2605–2617

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson EJ, Tibber MS, Schwarzkopf DS, Shergill SS, Fernandez-Egea E, Rees G et al (2017) Visual population receptive fields in people with schizophrenia have reduced inhibitory surrounds. J Neurosci 37(6):1546–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angelucci A, Bressloff PC (2006) Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons. Prog Brain Res 154:93–120

    Article  PubMed  Google Scholar 

  • Angelucci A, Levitt JB, Walton EJ, Hupe JM, Bullier J, Lund JS (2002) Circuits for local and global signal integration in primary visual cortex. J Neurosci off J Soc Neurosci 22(19):8633–46

    Article  CAS  Google Scholar 

  • Angelucci A, Bijanzadeh M, Nurminen L, Federer F, Merlin S, Bressloff PC (2017) Circuits and mechanisms for surround modulation in visual cortex. Annu Rev Neurosci 40:425–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arranz-Paraiso S, Serrano-Pedraza I (2018) Testing the link between visual suppression and intelligence. PLoS ONE 13(7):e0200151

    Article  PubMed  PubMed Central  Google Scholar 

  • Bachtoula O, Arranz-Paraiso S, Luna R, Serrano-Pedraza I (2023) Visual motion discrimination experiments reveal small differences between males and females. Vis Res 208:108222

    Article  PubMed  Google Scholar 

  • Barch DM, Carter CS, Dakin SC, Gold J, Luck SJ, MacDonald A et al (2012) The clinical translation of a measure of gain control: the contrast-contrast effect task. Schizophr Bull 38(1):135–43

    Article  PubMed  Google Scholar 

  • Battista J, Badcock DR, McKendrick AM (2010) Center-surround visual motion processing in migraine. Invest Ophth vis Sci 51(11):6070–6076

    Article  Google Scholar 

  • Battista J, Badcock DR, McKendrick AM (2011) Migraine increases centre-surround suppression for drifting visual stimuli. PLoS ONE 6(4):e18211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bejjani A, O’Neill J, Kim JA, Frew AJ, Yee VW, Ly R et al (2012) Elevated glutamatergic compounds in pregenual anterior cingulate in pediatric autism spectrum disorder demonstrated by 1H MRS and 1H MRSI. PLoS ONE 7(7):e38786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardi S, Anagnostou E, Shen J, Kolevzon A, Buxbaum JD, Hollander E et al (2011) In vivo 1H-magnetic resonance spectroscopy study of the attentional networks in autism. Brain Res 1380:198–205

    Article  CAS  PubMed  Google Scholar 

  • Betts LR, Taylor CP, Sekuler AB, Bennett PJ (2005) Aging reduces center-surround antagonism in visual motion processing. Neuron 45(3):361–6

    Article  CAS  PubMed  Google Scholar 

  • Betts LR, Sekuler AB, Bennett PJ (2009) Spatial characteristics of center-surround antagonism in younger and older adults. J vis 9(1):25

    Article  Google Scholar 

  • Betts LR, Sekuler AB, Bennett PJ (2012) Spatial characteristics of motion-sensitive mechanisms change with age and stimulus spatial frequency. Vis Res 53(1):1–14

    Article  PubMed  Google Scholar 

  • Bi TY, Cai P, Zhou TG, Fang F (2009) The effect of crowding on orientation-selective adaptation in human early visual cortex. J vis 9(11):13

    Article  Google Scholar 

  • Butler PD, Schechter I, Zemon V, Schwartz SG, Greenstein VC, Gordon J et al (2001) Dysfunction of early-stage visual processing in schizophrenia. Am J Psychiatry 158(7):1126–33

    Article  CAS  PubMed  Google Scholar 

  • Butler PD, Martinez A, Foxe JJ, Kim D, Zemon V, Silipo G et al (2007) Subcortical visual dysfunction in schizophrenia drives secondary cortical impairments. Brain 130(Pt 2):417–30

    Article  PubMed  Google Scholar 

  • Butler PD, Silverstein SM, Dakin SC (2008) Visual perception and its impairment in schizophrenia. Biol Psychiatry 64(1):40–7

    Article  PubMed  PubMed Central  Google Scholar 

  • Cannon MW, Fullenkamp SC (1991) Spatial interactions in apparent contrast - inhibitory effects among grating patterns of different spatial-frequencies, spatial positions and orientations. Vis Res 31(11):1985–000

    Article  CAS  PubMed  Google Scholar 

  • Cavanaugh JR, Bair W, Movshon JA (2002) Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. J Neurophysiol 88(5):2530–2546

    Article  PubMed  Google Scholar 

  • Chacron MJ, Doiron B, Maler L, Longtin A, Bastian J (2003) Non-classical receptive field mediates switch in a sensory neuron’s frequency tuning. Nature 423(6935):77–81

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain JD, Gagnon H, Lalwani P, Cassady KE, Simmonite M, Seidler RD et al (2021) GABA levels in ventral visual cortex decline with age and are associated with neural distinctiveness. Neurobiol Aging 102:170–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen WY, Li SG, Zhang T (2018) Cortical inhibition related to aging and mental disorders. Prog Biochem Biophys 45(4):401–8

    CAS  Google Scholar 

  • Chisum HJ, Mooser F, Fitzpatrick D (2003) Emergent properties of layer 2/3 neurons reflect the collinear arrangement of horizontal connections in tree shrew visual cortex. J Neurosci 23(7):2947–2960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook E, Hammett ST, Larsson J (2016) GABA predicts visual intelligence. Neurosci Lett 632:50–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz-Almeida Y, Forbes M, Cohen RC, Woods AJ, Fillingim RB, Riley III JL et al (2021) Brain gamma-aminobutyric acid, but not glutamine and glutamate levels are lower in older adults with chronic musculoskeletal pain: considerations by sex and brain location. Pain Rep 6(3)

  • Dai M, Liang PJ (2020) Functional-pathway-dominant contrast adaptation and sensitization in mouse retinal ganglion cells. Cogn Neurodyn 14(6):757–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dakin S, Frith U (2005) Vagaries of visual perception in autism. Neuron 48(3):497–507

    Article  CAS  PubMed  Google Scholar 

  • Dakin S, Carlin P, Hemsley D (2005) Weak suppression of visual context in chronic schizophrenia. Curr Biol 15(20):R822–R824

    Article  CAS  PubMed  Google Scholar 

  • Deng H, Chen WY, Kuang SB, Zhang T (2017) Distinct aging effects on motion repulsion and surround suppression in humans. Front Aging Neurosci 9:363

    Article  PubMed  PubMed Central  Google Scholar 

  • Desai PR, Lawson KA, Barner JC, Rascati KL (2013) Identifying patient characteristics associated with high schizophrenia-related direct medical costs in community-dwelling patients. J Manag Care Pharm 19(6):468–77

    PubMed  Google Scholar 

  • DeVito TJ, Drost DJ, Neufeld RW, Rajakumar N, Pavlosky W, Williamson P et al (2007) Evidence for cortical dysfunction in autism: a proton magnetic resonance spectroscopic imaging study. Biol Psychiatry 61(4):465–73

    Article  PubMed  Google Scholar 

  • Faubert J (2002) Visual perception and aging. Can J Exp Psychol 56(3):164–76

    Article  PubMed  Google Scholar 

  • Field DJ, Golden JR, Hayes A (2014) Contour integration and the association field. New Visual Neurosci 627–638

  • Fields C, Glazebrook JF (2017) Disrupted development and imbalanced function in the global neuronal workspace: a positive-feedback mechanism for the emergence of ASD in early infancy. Cogn Neurodyn 11(1):1–21

    Article  PubMed  Google Scholar 

  • Fisher TG, Alitto HJ, Usrey WM (2017) Retinal and nonretinal contributions to extraclassical surround suppression in the lateral geniculate nucleus. J Neurosci 37(1):226–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foss-Feig JH, Tadin D, Schauder KB, Cascio CJ (2013a) A substantial and unexpected enhancement of motion perception in autism. J Neurosci 33(19):8243–8249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Franceschi G, Solomon SG (2020) Dynamic contextual modulation in superior colliculus of awake mouse. Eneuro 7(5)

  • Gibson JJ, Radner M (1937) Adaptation, after-effect and contrast in the perception of tilted lines. I. Quantitative studies. J Exp Psychol 20:453–67

    Article  Google Scholar 

  • Gilbert CD, Das A, Ito M, Kapadia M, Westheimer G (1996) Spatial integration and cortical dynamics. Proc Natl Acad Sci USA 93(2):615–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginsberg JP (2003) Setting domain boundaries for convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behav Brain Sci 26(1):88–89

    Article  Google Scholar 

  • Golomb JD, McDavitt JRB, Ruf BM, Chen JI, Saricicek A, Maloney KH et al (2009) Enhanced visual motion perception in major depressive disorder. J Neurosci 29(28):9072–9077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haider B, McCormick DA (2009) Rapid neocortical dynamics: cellular and network mechanisms. Neuron 62(2):171–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haider B, Krause MR, Duque A, Yu YG, Touryan J, Mazer JA et al (2010) Synaptic and network mechanisms of sparse and reliable visual cortical activity during nonclassical receptive field stimulation. Neuron 65(1):107–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han CL, Wang T, Wu YJ, Li Y, Yang Y, Li L et al (2021) The generation and modulation of distinct gamma oscillations with local, horizontal, and feedback connections in the primary visual cortex: a model study on large-scale networks. Neural Plast 2021

  • Harada M, Taki MM, Nose A, Kubo H, Mori K, Nishitani H et al (2011) Non-invasive evaluation of the GABAergic/glutamatergic system in autistic patients observed by MEGA-editing proton MR spectroscopy using a clinical 3 tesla instrument. J Autism Dev Disord 41(4):447–54

    Article  PubMed  Google Scholar 

  • Hemsley DR (2005) The schizophrenic experience: Taken out of context? Schizophrenia Bull 31(1):43–53

    Article  Google Scholar 

  • Henry CA, Kohn A (2020) Spatial contextual effects in primary visual cortex limit feature representation under crowding. Nat Commun 11(1):1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horder J, Lavender T, Mendez MA, O’Gorman R, Daly E, Craig MC et al (2013) Reduced subcortical glutamate/glutamine in adults with autism spectrum disorders: a [(1)H]MRS study. Transl Psychiatry 3:e279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horder J, Petrinovic MM, Mendez MA, Bruns A, Takumi T, Spooren W et al (2018) Glutamate and GABA in autism spectrum disorder-a translational magnetic resonance spectroscopy study in man and rodent models. Transl Psychiatr 8:106

    Article  Google Scholar 

  • Huang DD, Liu D, Yin JZ, Qian TY, Shrestha S, Ni HY (2017) Glutamate-glutamine and GABA in brain of normal aged and patients with cognitive impairment (vol 27, pg 2698, 2017). Eur Radiol 27(7):2706–7

    Article  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1965) Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J Neurophysiol 28:229–289

    Article  CAS  PubMed  Google Scholar 

  • Jia S, Xing D, Yu Z, Liu JK (2021) Dissecting cascade computational components in spiking neural networks. PLoS Comput Biol 17(11):e1009640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones HE, Andolina IM, Oakely NM, Murphy PC, Sillito AM (2000) Spatial summation in lateral geniculate nucleus and visual cortex. Exp Brain Res 135(2):279–284

    Article  CAS  PubMed  Google Scholar 

  • Jones HE, Grieve KL, Wang W, Sillito AM (2001) Surround suppression in primate V1. J Neurophysiol 86(4):2011–2028

    Article  CAS  PubMed  Google Scholar 

  • Joshi G, Biederman J, Wozniak J, Goldin RL, Crowley D, Furtak S et al (2013) Magnetic resonance spectroscopy study of the glutamatergic system in adolescent males with high-functioning autistic disorder: a pilot study at 4T. Eur Arch Psychiatry Clin Neurosci 263(5):379–84

    Article  PubMed  Google Scholar 

  • Kapadia MK, Ito M, Gilbert CD, Westheimer G (1995) Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys. Neuron 15(4):843–856

    Article  CAS  PubMed  Google Scholar 

  • Karas R, McKendrick AM (2009) Aging alters surround modulation of perceived contrast. J vis 9(5):11

    Article  Google Scholar 

  • Karas R, McKendrick AM (2012) Age related changes to perceptual surround suppression of moving stimuli. Seeing Perceiving 25(5):409–24

    Article  PubMed  Google Scholar 

  • Karas R, McKendrick AM (2015) Contrast and stimulus duration dependence of perceptual surround suppression in older adults. Vis Res 110:7–14

    Article  PubMed  Google Scholar 

  • Kay KN, Winawer J, Mezer A, Wandell BA (2013) Compressive spatial summation in human visual cortex. J Neurophysiol 110(2):481–494

    Article  PubMed  PubMed Central  Google Scholar 

  • Keemink SW, Roucsein C, van Rossum MCW (2018) Effects of V1 surround modulation tuning on visual saliency and the tilt illusion. J Neurophysiol 120(3):942–52

    Article  PubMed  Google Scholar 

  • Keller AJ, Roth MM, Scanziani M (2020) Feedback generates a second receptive field in neurons of the visual cortex. Nature 582(7813):545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kessler RC, Birnbaum H, Demler O, Falloon IR, Gagnon E, Guyer M et al (2005) The prevalence and correlates of nonaffective psychosis in the National Comorbidity Survey Replication (NCS-R). Biol Psychiatry 58(8):668–76

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim E, Park YK, Byun YH, Park MS, Kim H (2014) Influence of aging on visual perception and visual motor integration in Korean adults. J Exerc Rehabil 10(4):245–50

    Article  PubMed  PubMed Central  Google Scholar 

  • Klencklen G, Despres O, Dufour A (2012) What do we know about aging and spatial cognition? Reviews and perspectives. Ageing Res Rev 11(1):123–35

    Article  PubMed  Google Scholar 

  • Kolodny T, Schallmo MP, Gerdts J, Edden RAE, Bernier RA, Murray SO (2020) Concentrations of cortical GABA and glutamate in young adults with autism spectrum disorder. Autism Res 13(7):1111–29

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamme VA (1995) The neurophysiology of figure-ground segregation in primary visual cortex. J Neurosci 15(2):1605–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levitt JB, Lund JS (2002) The spatial extent over which neurons in macaque striate cortex pool visual signals. Vis Neurosci 19(4):439–452

    Article  PubMed  Google Scholar 

  • Li ZP (1999) Contextual influences in V1 as a basis for pop out and asymmetry in visual search. Proc Natl Acad Sci USA 96(18):10530–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z (2002) A saliency map in primary visual cortex. Trends Cogn Sci 6(1):9–16

    Article  PubMed  Google Scholar 

  • Li CY, Li W (1994) Extensive integration field beyond the classical receptive field of cat’s striate cortical neurons–classification and tuning properties. Vis Res 34(18):2337–2355

    Article  CAS  PubMed  Google Scholar 

  • Li B, Routh BN, Johnston D, Seidemann E, Priebe NJ (2020) Voltage-gated intrinsic conductances shape the input–output relationship of cortical neurons in behaving primate V1. Neuron 107(1):185–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Wang T, Yang Y, Dai W, Wu Y, Li L et al (2022) Cascaded normalizations for spatial integration in the primary visual cortex of primates. Cell Rep 40(7):111221

    Article  CAS  PubMed  Google Scholar 

  • Linares D, Amoretti S, Marin-Campos R, Sousa A, Prades L, Dalmau J et al (2020) Spatial suppression and sensitivity for motion in schizophrenia. Schizophr Bull Open 1(1):sgaa45

    Google Scholar 

  • Liu LD, Miller KD, Pack CC (2018) A unifying motif for spatial and directional surround suppression. J Neurosci 38(4):989–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Li H, Wang Y, Lei T, Wang J, Spillmann L et al (2021) From receptive to perceptive fields: size-dependent asymmetries in both negative afterimages and subcortical on and off post-stimulus responses. J Neurosci 41(37):7813–7830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma WP, Liu BH, Li YT, Huang ZJ, Zhang LI, Tao HZW (2010) Visual representations by cortical somatostatin inhibitory neurons-selective but with weak and delayed responses. J Neurosci 30(43):14371–14379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maes C, Hermans L, Pauwels L, Chalavi S, Leunissen I, Levin O et al (2018) Age-related differences in GABA levels are driven by bulk tissue changes. Hum Brain Mapp 39(9):3652–3662

    Article  PubMed  PubMed Central  Google Scholar 

  • Maier S, Duppers AL, Runge K, Dacko M, Lange T, Fangmeier T et al (2022) Increased prefrontal GABA concentrations in adults with autism spectrum disorders. Autism Res 15(7):1222–1236

    Article  PubMed  Google Scholar 

  • Malavita MS, Vidyasagar TR, McKendrick AM (2017) The effect of aging and attention on visual crowding and surround suppression of perceived contrast threshold. Invest Ophth Vis Sci 58(2):860–867

    Article  Google Scholar 

  • Malavita MS, Vidyasagar TR, McKendrick AM (2021) The effect of aging on the eccentricity dependency of orientation anisotropy of perceptual surround suppression. J Vis 21(1):13

    Article  PubMed  PubMed Central  Google Scholar 

  • Mareschal I, Clifford CWG (2013) Spatial structure of contextual modulation. J Vis 13(6):2

    Article  PubMed  Google Scholar 

  • Marsman A, van den Heuvel MP, Klomp DW, Kahn RS, Luijten PR, Hulshoff Pol HE (2013) Glutamate in schizophrenia: a focused review and meta-analysis of (1)H-MRS studies. Schizophr Bull 39(1):120–129

    Article  PubMed  Google Scholar 

  • Meese TS, Challinor KL, Summers RJ, Baker DH (2009) Suppression pathways saturate with contrast for parallel surrounds but not for superimposed cross-oriented masks. Vis Res 49(24):2927–2935

    Article  PubMed  Google Scholar 

  • Merritt K, Egerton A, Kempton MJ, Taylor MJ, McGuire PK (2016) Nature of glutamate alterations in schizophrenia: a meta-analysis of proton magnetic resonance spectroscopy studies. JAMA Psychiat 73(7):665–674

    Article  Google Scholar 

  • Mitchell DE, Muir DW (1976) Does the tilt after-effect occur in the oblique meridian? Vision Res 16(6):609–613

    Article  CAS  PubMed  Google Scholar 

  • Nakahara T, Tsugawa S, Noda Y, Ueno F, Honda S, Kinjo M et al (2022) Glutamatergic and GABAergic metabolite levels in schizophrenia-spectrum disorders: a meta-analysis of (1)H-magnetic resonance spectroscopy studies. Mol Psychiatry 27(1):744–757

    Article  CAS  PubMed  Google Scholar 

  • Nassi JJ, Lomber SG, Born RT (2013) Corticocortical feedback contributes to surround suppression in V1 of the alert primate. J Neurosci 33(19):8504–8517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen BN, Chan YM, Bode S, McKendrick AM (2020) Orientation-dependency of perceptual surround suppression and orientation decoding of centre-surround stimuli are preserved with healthy ageing. Vis Res 176:72–79

    Article  PubMed  Google Scholar 

  • Nguyen BN, Ramakrishnan B, Narayanan A, Hussaindeen JR, McKendrick AM (2023) Perceptual center-surround contrast suppression in adolescence. Invest Ophthalmol Vis Sci 64(5):14

    Article  PubMed  PubMed Central  Google Scholar 

  • Nienborg H, Hasenstaub A, Nauhaus I, Taniguchi H, Huang ZJ, Callaway EM (2013) Contrast dependence and differential contributions from somatostatin- and parvalbumin-expressing neurons to spatial integration in mouse V1. J Neurosci 33(27):11145–11154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nothdurft HC (2000) Salience from feature contrast: additivity across dimensions. Vis Res 40(10–12):1183–1201

    Article  CAS  PubMed  Google Scholar 

  • Nothdurft HC, Gallant JL, Van Essen DC (1999) Response modulation by texture surround in primate area V1: correlates of “popout” under anesthesia. Vis Neurosci 16(1):15–34

    Article  CAS  PubMed  Google Scholar 

  • Nurminen L, Angelucci A (2014) Multiple components of surround modulation in primary visual cortex: Multiple neural circuits with multiple functions? Vision Res 104:47–56

    Article  PubMed  Google Scholar 

  • Nurminen L, Merlin S, Bijanzadeh M, Federer F, Angelucci A (2018) Top-down feedback controls spatial summation and response amplitude in primate visual cortex. Nat Commun 9:1–13

    Article  CAS  Google Scholar 

  • Ohtani Y, Okamura S, Yoshida Y, Toyama K, Ejima Y (2002) Surround suppression in the human visual cortex: an analysis using magneto encephalography. Vis Res 42(15):1825–1835

    Article  PubMed  Google Scholar 

  • Olsen SR, Wilson RI (2008) Lateral presynaptic inhibition mediates gain control in an olfactory circuit. Nature 452(7190):956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orekhova EV, Manyukhina VO, Galuta IA, Prokofyev AO, Goiaeva DE, Obukhova TS et al (2023) Gamma oscillations point to the role of primary visual cortex in atypical motion processing in autism. PLoS ONE 18(2):e0281531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owsley C (2011) Aging and vision. Vis Res 51(13):1610–1622

    Article  PubMed  Google Scholar 

  • Ozeki H, Sadakane O, Akasaki T, Naito T, Shimegi S, Sato H (2004) Relationship between excitation and inhibition underlying size tuning and contextual response modulation in the cat primary visual cortex. J Neurosci 24(6):1428–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozeki H, Finn IM, Schaffer ES, Miller KD, Ferster D (2009) Inhibitory stabilization of the cortical network underlies visual surround suppression. Neuron 62(4):578–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pack CC, Hunter JN, Born RT (2005) Contrast dependence of suppressive influences in cortical area MT of alert macaque. J Neurophysiol 93(3):1809–1815

    Article  PubMed  Google Scholar 

  • Page LA, Daly E, Schmitz N, Simmons A, Toal F, Deeley Q et al (2006) In vivo 1H-magnetic resonance spectroscopy study of amygdala-hippocampal and parietal regions in autism. Am J Psychiatry 163(12):2189–2192

    Article  PubMed  Google Scholar 

  • Petrov Y, Mckee SP (2009) The time course of contrast masking reveals two distinct mechanisms of human surround suppression. J Vis 9(1):21

    Article  Google Scholar 

  • Petrov Y, Carandini M, McKee S (2005) Two distinct mechanisms of suppression in human vision. J Neurosci 25(38):8704–8707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitchaimuthu K, Wu QZ, Carter O, Nguyen BN, Ahn S, Egan GF et al (2017) Occipital GABA levels in older adults and their relationship to visual perceptual suppression. Sci Rep UK 7:14231

    Article  Google Scholar 

  • Pokorny VJ, Lano TJ, Schallmo MP, Olman CA, Sponheim SR (2021) Reduced influence of perceptual context in schizophrenia: behavioral and neurophysiological evidence. Psychol Med 51(5):786–794

    Article  PubMed  Google Scholar 

  • Pokorny VJ, Schallmo MP, Sponheim SR, Olman CA (2023) Weakened untuned gain control is associated with schizophrenia while atypical orientation-tuned suppression depends on visual acuity. J Vis 23(2):2

    Article  PubMed  PubMed Central  Google Scholar 

  • Polat U, Sagi D (1993) Lateral interactions between spatial channels - suppression and facilitation revealed by lateral masking experiments. Vis Res 33(7):993–999

    Article  CAS  PubMed  Google Scholar 

  • Porges EC, Woods AJ, Edden RA, Puts NA, Harris AD, Chen H et al (2017) Frontal gamma-aminobutyric acid concentrations are associated with cognitive performance in older adults. Biol Psychiatry Cogn Neurosci Neuroimag 2(1):38–44

    Google Scholar 

  • Robertson CE, Ratai EM, Kanwisher N (2016) Reduced GABAergic action in the autistic brain. Curr Biol 26(1):80–85

    Article  CAS  PubMed  Google Scholar 

  • Ronconi L, Gori S, Federici A, Devita M, Carna S, Sali ME et al (2018) Weak surround suppression of the attentional focus characterizes visual selection in the ventral stream in autism. Neuroimage-Clin 18:912–922

    Article  PubMed  PubMed Central  Google Scholar 

  • Sachdev RNS, Krause MR, Mazer JA (2012) Surround suppression and sparse coding in visual and barrel cortices. Front Neural Circuit 6:43

    Article  Google Scholar 

  • Sapkota RP, van der Linde I, Pardhan S (2020) How does aging influence object-location and name-location binding during a visual short-term memory task? Aging Ment Health 24(1):63–72

    Article  PubMed  Google Scholar 

  • Sceniak MP, Hawken MJ, Shapley R (2001) Visual spatial characterization of macaque V1 neurons. J Neurophysiol 85(5):1873–1887

    Article  CAS  PubMed  Google Scholar 

  • Schach S, Surges R, Helmstaedter C (2021) Visual surround suppression in people with epilepsy correlates with attentional-executive functioning, but not with epilepsy or seizure types. Epilepsy Behav 121(Pt A):108080

    Article  PubMed  Google Scholar 

  • Schallmo MP, Sponheim SR, Olman CA (2015) Reduced contextual effects on visual contrast perception in schizophrenia and bipolar affective disorder. Psychol Med 45(16):3527–3537

    Article  PubMed  PubMed Central  Google Scholar 

  • Schallmo MP, Kale AM, Millin R, Flevaris AV, Brkanac Z, Edden RAE et al (2018) Suppression and facilitation of human neural responses. Elife 7:e30334

    Article  PubMed  PubMed Central  Google Scholar 

  • Schallmo MP, Kale AM, Murray SO (2019) The time course of different surround suppression mechanisms. J vis 19(4):12

    Article  PubMed  PubMed Central  Google Scholar 

  • Schallmo MP, Kolodny T, Kale AM, Millin R, Flevaris AV, Edden RAE et al (2020) Weaker neural suppression in autism. Nat Commun 11(1):2675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schauder KB, Park WJ, Tadin D, Bennetto L (2017) Larger receptive field size as a mechanism underlying atypical motion perception in autism spectrum disorder. Clin Psychol Sci 5(5):827–842

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwartz O, Sejnowski TJ, Dayan P (2009) Perceptual organization in the tilt illusion. J vis 9(4):19

    Article  Google Scholar 

  • Self MW, Lorteije JAM, Vangeneugden J, van Beest EH, Grigore ME, Levelt CN et al (2014) Orientation-tuned surround suppression in mouse visual cortex. J Neurosci 34(28):9290–9304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Self MW, Peters JC, Possel JK, Reithler J, Goebel R, Ris P et al (2016) The effects of context and attention on spiking activity in human early visual cortex. Plos Biol 14(3):e1002420

    Article  PubMed  PubMed Central  Google Scholar 

  • Sengpiel F, Sen A, Blakemore C (1997) Characteristics of surround inhibition in cat area 17. Exp Brain Res 116(2):216–228

    Article  CAS  PubMed  Google Scholar 

  • Serrano-Pedraza I, Romero-Ferreiro V, Read JCA, Dieguez-Risco T, Bagney A, Caballero-Gonzalez M et al (2014) Reduced visual surround suppression in schizophrenia shown by measuring contrast detection thresholds. Front Psychol 5:1431

    Article  PubMed  PubMed Central  Google Scholar 

  • Seymour KJ, Stein T, Clifford CWG, Sterzer P (2018) Cortical suppression in human primary visual cortex predicts individual differences in illusory tilt perception. J vis 18(11):3

    Article  PubMed  Google Scholar 

  • Shen ZM, Xu WF, Li CY (2007) Cue-invariant detection of centre-surround discontinuity by V1 neurons in awake macaque monkey. J Physiol-London 583(2):581–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shushruth S, Ichida JM, Levitt JB, Angelucci A (2009) Comparison of spatial summation properties of neurons in macaque V1 and V2. J Neurophysiol 102(4):2069–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shushruth S, Mangapathy P, Ichida JM, Bressloff PC, Schwabe L, Angelucci A (2012) Strong recurrent networks compute the orientation tuning of surround modulation in the primate primary visual cortex. J Neurosci off J Soc Neurosci 32(1):308–321

    Article  CAS  Google Scholar 

  • Shushruth S, Nurminen L, Bijanzadeh M, Ichida JM, Vanni S, Angelucci A (2013) Different orientation tuning of near- and far-surround suppression in macaque primary visual cortex mirrors their tuning in human perception. J Neurosci 33(1):106–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sillito AM, Grieve KL, Jones HE, Cudeiro J, Davis J (1995) Visual cortical mechanisms detecting focal orientation discontinuities. Nature 378(6556):492–496

    Article  CAS  PubMed  Google Scholar 

  • Solomon SG, White AJR, Martin PR (2002) Extraclassical receptive field properties of parvocellular, magnocellular, and koniocellular cells in the primate lateral geniculate nucleus. J Neurosci 22(1):338–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solomon SG, Lee BB, Sun H (2006) Suppressive surrounds and contrast gain in magnocellular-pathway retinal ganglion cells of macaque. J Neurosci 26(34):8715–8726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutter ML, Schreiner CE, McLean M, O’Connor KN, Loftus WC (1999) Organization of inhibitory frequency receptive fields in cat primary auditory cortex. J Neurophysiol 82(5):2358–2371

    Article  CAS  PubMed  Google Scholar 

  • Sysoeva OV, Galuta IA, Davletshina MS, Orekhova EV, Stroganova TA (2017) Abnormal size-dependent modulation of motion perception in children with autism spectrum disorder (ASD). Front Neurosci Switz 11:164

    Google Scholar 

  • Tadin D (2015a) Suppressive mechanisms in visual motion processing: from perception to intelligence. Vis Res 115:58–70

    Article  PubMed  Google Scholar 

  • Tadin D (2015b) Suppressive mechanisms in visual motion processing: from perception to intelligence. Vis Res 115(Pt A):58–70

    Article  PubMed  Google Scholar 

  • Tadin D, Lappin JS, Gilroy LA, Blake R (2003) Perceptual consequences of centre-surround antagonism in visual motion processing. Nature 424(6946):312–315

    Article  CAS  PubMed  Google Scholar 

  • Tadin D, Kim J, Doop ML, Gibson C, Lappin JS, Blake R et al (2006) Weakened center-surround interactions in visual motion processing in schizophrenia. J Neurosci 26(44):11403–11412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tadin D, Silvanto J, Pascual-Leone A, Battelli L (2011) Improved motion perception and impaired spatial suppression following disruption of cortical area MT/V5. J Neurosci 31(4):1279–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tadin D, Park WJ, Dieter KC, Melnick MD, Lappin JS, Blake R (2019) Spatial suppression promotes rapid figure-ground segmentation of moving objects. Nat Commun 10:2732

    Article  PubMed  PubMed Central  Google Scholar 

  • Teng CL, Cheng Y, Wang C, Ren YJ, Xu WY, Xu J (2018) Aging-related changes of EEG synchronization during a visual working memory task. Cogn Neurodyn 12(6):561–568

    Article  PubMed  PubMed Central  Google Scholar 

  • Tibber MS, Anderson EJ, Bobin T, Antonova E, Seabright A, Wright B et al (2013) Visual surround suppression in schizophrenia. Front Psychol 4:88

    Article  PubMed  PubMed Central  Google Scholar 

  • Troche SJ, Thomas P, Tadin D, Rammsayer TH (2018) On the relationship between spatial suppression, speed of information processing, and psychometric intelligence. Intelligence 67:11–18

    Article  Google Scholar 

  • Tsui JMG, Pack CC (2011) Contrast sensitivity of MT receptive field centers and surrounds. J Neurophysiol 106(4):1888–1900

    Article  PubMed  Google Scholar 

  • Vaiceliunaite A, Erisken S, Franzen F, Katzner S, Busse L (2013) Spatial integration in mouse primary visual cortex. J Neurophysiol 110(4):964–972

    Article  PubMed  PubMed Central  Google Scholar 

  • Van den Bergh G, Zhang B, Arckens L, Chino YM (2010) Receptive-field properties of V1 and V2 neurons in mice and macaque monkeys. J Comp Neurol 518(11):2051–2070

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanegas MI, Blangero A, Kelly SP (2015) Electrophysiological indices of surround suppression in humans. J Neurophysiol 113(4):1100–1109

    Article  PubMed  Google Scholar 

  • Wang RB, Zhang ZK (2007) Energy coding in biological neural networks. Cogn Neurodyn 1(3):203–212

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang T, Li Y, Yang GZ, Dai WF, Yang Y, Han CL et al (2020) Laminar subnetworks of response suppression in macaque primary visual cortex. J Neurosci 40(39):7436–7450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu EQ, Shi L, Birnbaum H, Hudson T, Kessler R (2006) Annual prevalence of diagnosed schizophrenia in the USA: a claims data analysis approach. Psychol Med 36(11):1535–1540

    Article  PubMed  Google Scholar 

  • Wu Y, Wang T, Zhou T, Li Y, Yang Y, Dai W et al (2022) V1-bypassing suppression leads to direction-specific microsaccade modulation in visual coding and perception. Nat Commun 13(1):6366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing J, Heeger DJ (2000) Center-surround interactions in foveal and peripheral vision. Vis Res 40(22):3065–3072

    Article  CAS  PubMed  Google Scholar 

  • Xing J, Heeger DJ (2001) Measurement and modeling of center-surround suppression and enhancement. Vis Res 41(5):571–583

    Article  CAS  PubMed  Google Scholar 

  • Yang E, Tadin D, Glasser DM, Hong SW, Blake R, Park S (2013) Visual context processing in bipolar disorder: a comparison with schizophrenia. Front Psychol 4:569

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang E, Tadin D, Glasser DM, Hong SW, Blake R, Park S (2013) Visual context processing in schizophrenia. Clin Psychol Sci 1(1):5–15

    Article  PubMed  Google Scholar 

  • Yang Y, Wang T, Li Y, Dai W, Yang G, Han C et al (2022) Coding strategy for surface luminance switches in the primary visual cortex of the awake monkey. Nat Commun 13(1):286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yazdani P, Read JC, Whittaker RG, Trevelyan AJ (2017) Assessment of epilepsy using noninvasive visual psychophysics tests of surround suppression. Physiol Rep 5(5):e13079

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoon JH, Rokem AS, Silver MA, Minzenberg MJ, Ursu S, Ragland JD et al (2009) Diminished orientation-specific surround suppression of visual processing in schizophrenia. Schizophr Bull 35(6):1078–1084

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoon JH, Maddock RJ, Rokem A, Silver MA, Minzenberg MJ, Ragland JD et al (2010) GABA concentration is reduced in visual cortex in schizophrenia and correlates with orientation-specific surround suppression. J Neurosci 30(10):3777–3781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Xu F, Hu XM, Tu YN, Zhang QY, Ye Z et al (2022) Mechanisms of surround suppression effect on the contrast sensitivity of V1 neurons in cats. Neural Plasticity 2022

  • Zanos TP, Mineault PJ, Monteon JA, Pack CC (2011) Functional connectivity during surround suppression in macaque area V4. IEEE Eng Med Biol 3342–3345

  • Zenger-Landolt B, Heeger DJ (2003) Response suppression in V1 agrees with psychophysics of surround masking. J Neurosci 23(17):6884–6893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhang XH (2021) Portrait of visual cortical circuits for generating neural oscillation dynamics. Cogn Neurodyn 15(1):3–16

    Article  PubMed  Google Scholar 

  • Zhang G, Cui Y, Zhang YS, Cao HF, Zhou GY, Shu HF et al (2021) Computational exploration of dynamic mechanisms of steady state visual evoked potentials at the whole brain level. Neuroimage 237:118166

    Article  PubMed  Google Scholar 

  • Zhong HX, Wang RB (2021a) Neural mechanism of visual information degradation from retina to V1 area. Cogn Neurodyn 15(2):299–313

    Article  PubMed  Google Scholar 

  • Zhong HX, Wang RB (2021b) A new discovery on visual information dynamic changes from V1 to V2: corner encoding. Nonlinear Dyn 105(4):3551–3570

    Article  Google Scholar 

  • Zhou JW, Li L, Zhang P, Xi J, Zhou YF, Lu ZL et al (2015) Tilt after-effect from high spatial-frequency patterns in the amblyopic eye of adults with anisometropic amblyopia. Sci Rep UK 5:8728

    Article  CAS  Google Scholar 

  • Zhuang XB, Chen YX, Zhuang XP, Xing T, Chen TZ, Jiang GS et al (2017) Impaired center-surround suppression in patients with Alzheimer’s disease. J Alzheimers Dis 55(3):1101–1108

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Fundamental Research Funds for the Central Universities under Grant 2023JKF02ZK14 and National Science and Technology Innovation 2030 Major Program (2022ZD0204600).

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the paper.

Corresponding author

Correspondence to Dajun Xing.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Dai, W., Wang, T. et al. Visual surround suppression at the neural and perceptual levels. Cogn Neurodyn 18, 741–756 (2024). https://doi.org/10.1007/s11571-023-10027-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-023-10027-3

Keywords

Navigation