Skip to main content
Log in

Biomechanical analysis of laminectomy, laminoplasty, posterior decompression with instrumented fusion, and anterior decompression with fusion for the kyphotic cervical spine

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Anterior and posterior decompressions for cervical myelopathy and radiculopathy may lead to clinical improvements. However, patients with kyphotic cervical alignment have sometimes shown poor clinical outcomes with posterior decompression. There is a lack on report of mechanical analysis of the decompression procedures for kyphotic cervical alignment.

Methods

This study employed a three-dimensional finite element (FE) model of the cervical spine (C2-C7) with the pre-operative kyphotic alignment (Pre-OK) model and compared the biomechanical parameters (range of motion (ROM), annular stresses, nucleus stresses, and facet contact forces) for four decompression procedures at two levels (C3-C5); laminectomy (LN), laminoplasty (LP), posterior decompression with fusion (PDF), and anterior decompression with fusion (ADF). Pure moment with compressive follower load was applied to these models.

Results

PDF and ADF models’ global ROM were 40% at C2-C7 less than the Pre-OK, LN, and LP models. The annular and nucleus stresses decreased more than 10% at the surgery levels for ADF, and PDF, compared to the Pre-OK, LN, and LP models. However, the annular stresses at the adjacent cranial level (C2-C3) of ADF were 20% higher. The nucleus stresses of the caudal adjacent level (C5-C6) of PDF were 20% higher, compared to other models. The PDF and ADF models showed a less than 70% decrease in the facet forces at the surgery levels, compared to the Pre-OK, LN, and LP models.

Conclusion

The study concluded that posterior decompression, such as LN or LP, increases ROM, disc stress, and facet force and thus can lead to instability. Although there is the risk of adjacent segment disease (ASD), PDF and ADF can stabilize the cervical spine even for kyphotic alignments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Boody BS, Lendner M, Vaccaro AR (2019) Ossification of the posterior longitudinal ligament in the cervical spine: a review. Int Orthop 43(4):797–805

    Article  Google Scholar 

  2. Yoshii T, Sakai K, Hirai T, Yamada T, Inose H, Kato T, Enomoto M, Tomizawa S, Kawabata S, Arai Y, Okawa A (2016) Anterior decompression with fusion versus posterior decompression with fusion for massive cervical ossification of the posterior longitudinal ligament with a ≥50% canal occupying ratio: a multicenter retrospective study. Spine J 16(11):1351–1357

    Article  Google Scholar 

  3. Inose H, Hirai T, Yoshii T, Kimura A, Takeshita K, Inoue H, Maekawa A, Endo K, Furuya T, Nakamura A, Mori K, Kanbara S, Imagama S, Seki S, Matsunaga S, Takahashi K, Okawa A (2021) Predictors associated with neurological recovery after anterior decompression with fusion for degenerative cervical myelopathy. BMC Surg 21(1):144

    Article  Google Scholar 

  4. Sakai K, Yoshii T, Hirai T, Arai Y, Torigoe I, Tomori M, Sato H, Okawa A (2016) Cervical sagittal imbalance is a predictor of kyphotic deformity after laminoplasty in cervical spondylotic myelopathy patients without preoperative kyphotic alignment. Spine (Phila Pa 1976) 41(4):299–305

    Article  Google Scholar 

  5. Mayer M, Meier O, Auffarth A, Koller H (2015) Cervical laminectomy and instrumented lateral mass fusion: techniques, pearls and pitfalls. Eur Spine J 24(Suppl 2):168–185

    Article  Google Scholar 

  6. Yoshii T, Egawa S, Chikuda H, Wakao N, Furuya T, Kanchiku T, Nagoshi N, Fujiwara Y, Yoshida M, Taguchi T, Watanabe M (2020) Comparison of anterior decompression with fusion and posterior decompression with fusion for cervical spondylotic myelopathy-A systematic review and meta-analysis. J Orthop Sci 25(6):938–945

    Article  Google Scholar 

  7. Palepu V (2013) Biomechanical effects of initial occupant seated posture during rear end impact injury. OhioLINK electronic Theses and Dissertations Center. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1376585027

  8. Kallemeyn N, Gandhi A, Kode S, Shivanna K, Smucker J, Grosland N (2010) Validation of a C2-C7 cervical spine finite element model using specimen-specific flexibility data. Med Eng Phys 32(5):482–489

    Article  Google Scholar 

  9. Venkataramana MP, Hans SA, Bawab SY, Keifer OP, Woodhouse ML, Layson PD (2005) Effects of initial seated position in low speed rear-end impacts: a comparison with the TNO rear impact dummy (TRID) model. Traffic Inj Prev 6(1):77–85

    Article  Google Scholar 

  10. Pospiech J, Stolke D, Wilke HJ, Claes LE (1999) Intradiscal pressure recordings in the cervical spine. Neurosurgery 44(2):379–384

    Article  CAS  Google Scholar 

  11. Finn MA, Brodke DS, Daubs M, Patel A, Bachus KN (2009) Local and global subaxial cervical spine biomechanics after single-level fusion or cervical arthroplasty. Eur Spine J 18(10):1520–1527

    Article  Google Scholar 

  12. Goel VK, Clausen JD (1998) Prediction of load sharing among spinal components of a C5–C6 motion segment using the finite element approach. Spine (Phila Pa 1976) 23(6):684–691

    Article  CAS  Google Scholar 

  13. Little JP, Adam CJ, Evans JH, Pettet GJ, Pearcy MJ (2007) Nonlinear finite element analysis of anular lesions in the L4/5 intervertebral disc. J Biomech 40(12):2744–2751

    Article  CAS  Google Scholar 

  14. Godzik J, Pereira BA, Newcomb A, Lehrman JN, Mundis GM Jr, Hlubek RJ, Uribe JS, Kelly BP, Turner JD (2020) Optimizing biomechanics of anterior column realignment for minimally invasive deformity correction. Spine J 20(3):465–474

    Article  Google Scholar 

  15. Nishida N, Mumtaz M, Tripathi S, Kelkar A, Sakai T, Goel VK (2021) Biomechanical analysis of posterior ligaments of cervical spine and laminoplasty. Appl Sci 11(16):7645

    Article  CAS  Google Scholar 

  16. Scheer JK, Tang JA, Smith JS, Acosta FL Jr, Protopsaltis TS, Blondel B, Bess S, Shaffrey CI, Deviren V, Lafage V, Schwab F, Ames CP (2013) Cervical spine alignment, sagittal deformity, and clinical implications: a review. J Neurosurg Spine 19(2):141–159

    Article  Google Scholar 

  17. Hayashi T, Daubs MD, Suzuki A, Phan K, Shiba K, Wang JC (2014) Effect of Modic changes on spinal canal stenosis and segmental motion in cervical spine. Eur Spine J 23(8):1737–1742

    Article  Google Scholar 

  18. Hirabayashi S (2018) Recent surgical methods of double-door laminoplasty of the cervical spine (Kurokawa’s Method). Spine Surg Relat Res 2(2):154–158

    Article  Google Scholar 

  19. Kumaran Y, Shah A, Katragadda A, Padgaonkar A, Zavatsky J, McGuire R, Serhan H, Elgafy H, Goel VK (2021) Iatrogenic muscle damage in transforaminal lumbar interbody fusion and adjacent segment degeneration: a comparative finite element analysis of open and minimally invasive surgeries. Eur Spine J 30(9):2622–2630

    Article  Google Scholar 

  20. Quinn JC, Kiely PD, Lebl DR, Hughes AP (2015) Anterior surgical treatment of cervical spondylotic myelopathy: review article. Hss J 11(1):15–25

    Article  Google Scholar 

  21. Patwardhan AG, Havey RM, Carandang G, Simonds J, Voronov LI, Ghanayem AJ, Meade KP, Gavin TM, Paxinos O (2003) Effect of compressive follower preload on the flexion-extension response of the human lumbar spine. J Orthop Res 21(3):540–546

    Article  Google Scholar 

  22. Khuyagbaatar B, Kim K, Park WM, Lee S, Kim YH (2017) Increased stress and strain on the spinal cord due to ossification of the posterior longitudinal ligament in the cervical spine under flexion after laminectomy. Proc Inst Mech Eng H 231(9):898–906

    Article  Google Scholar 

  23. Hirabayashi S, Kitagawa T, Yamamoto I, Yamada K, Kawano H (2020) Development and achievement of cervical laminoplasty and related studies on cervical myelopathy. Spine Surg Relat Res 4(1):8–17

    Article  Google Scholar 

  24. Winestone JS, Farley CW, Curt BA, Chavanne A, Dollin N, Pettigrew DB, Ct K (2012) Laminectomy, durotomy, and piotomy effects on spinal cord intramedullary pressure in severe cervical and thoracic kyphotic deformity: a cadaveric study. J Neurosurg Spine 16(2):195–200

    Article  Google Scholar 

  25. Qian S, Wang Z, Jiang G, Xu Z, Chen W (2018) Efficacy of laminoplasty in patients with cervical kyphosis. Med Sci Monit 24:1188–1195

    Article  Google Scholar 

  26. Hashiguchi A, Kanchiku T, Nishida N, Taguchi T (2018) Biomechanical study of cervical posterior decompression. Asian Spine J 12(3):391–397

    Article  Google Scholar 

  27. Subramaniam V, Chamberlain RH, Theodore N, Baek S, Safavi-Abbasi S, Senoğlu M, Sonntag VK, Crawford NR (2009) Biomechanical effects of laminoplasty versus laminectomy: stenosis and stability. Spine (Phila Pa 1976) 34(16):E573-578

    Article  Google Scholar 

  28. Kim BS, Dhillon RS (2019) Cervical laminectomy with or without lateral mass instrumentation: a comparison of outcomes. Clin Spine Surg 32(6):226–232

    Article  Google Scholar 

  29. Abumi K (2015) Cervical spondylotic myelopathy: posterior decompression and pedicle screw fixation. Eur Spine J 24(Suppl 2):186–196

    Article  Google Scholar 

  30. Papagelopoulos PJ, Currier BL, Neale PG, Hokari Y, Berglund LJ, Larson DR, Fisher DR, An KN (2003) Biomechanical evaluation of posterior screw fixation in cadaveric cervical spines. Clin Orthop Relat Res. https://doi.org/10.1097/01.blo.0000068359.47147.bd(411):13-24

    Article  PubMed  Google Scholar 

  31. Karasin B, Grzelak M (2021) Anterior cervical discectomy and fusion: a surgical intervention for treating cervical disc disease. Aorn j 113(3):237–251

    Article  Google Scholar 

  32. Deng Y, Li G, Liu H, Hong Y, Meng Y (2020) Mid- to long-term rates of symptomatic adjacent-level disease requiring surgery after cervical total disc replacement compared with anterior cervical discectomy and fusion: a meta-analysis of prospective randomized clinical trials. J Orthop Surg Res 15(1):468

    Article  Google Scholar 

  33. Li Z, Liu H, Yang M, Zhang W (2021) A biomechanical analysis of four anterior cervical techniques to treating multilevel cervical spondylotic myelopathy: a finite element study. BMC Musculoskelet Disord 22(1):278

    Article  Google Scholar 

  34. Siemionow K, Monsef JB, Janusz P (2016) Preliminary analysis of adjacent segment degeneration in patients treated with posterior cervical cages: 2-year follow-up. World Neurosurg 89:730.e731-737

    Article  Google Scholar 

  35. Xia Y, Xu R, Kosztowski TA, Ramhmdani S, Ahmed AK, Lo SL, Bydon A (2019) Reoperation for proximal adjacent segment pathology in posterior cervical fusion constructs that fuse to C2 vs C3. Neurosurgery 85(3):E520-e526

    Article  Google Scholar 

  36. Xia XP, Chen HL, Cheng HB (2013) Prevalence of adjacent segment degeneration after spine surgery: a systematic review and meta-analysis. Spine 38(7):597–608

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay K. Goel.

Ethics declarations

Conflict of interest

No benefits in any form have been received or will be acquired by a commercial party related directly or indirectly to the subject of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishida, N., Mumtaz, M., Tripathi, S. et al. Biomechanical analysis of laminectomy, laminoplasty, posterior decompression with instrumented fusion, and anterior decompression with fusion for the kyphotic cervical spine. Int J CARS 17, 1531–1541 (2022). https://doi.org/10.1007/s11548-022-02692-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-022-02692-2

Keywords

Navigation