Skip to main content

Advertisement

Log in

Dual-energy CT improves differentiation of non-hypervascular pancreatic neuroendocrine neoplasms from CA 19-9-negative pancreatic ductal adenocarcinomas

  • Abdominal Radiology
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the utility of dual-energy CT (DECT) in differentiating non-hypervascular pancreatic neuroendocrine neoplasms (PNENs) from pancreatic ductal adenocarcinomas (PDACs) with negative carbohydrate antigen 19–9 (CA 19-9).

Methods

This retrospective study included 26 and 39 patients with pathologically confirmed non-hypervascular PNENs and CA 19-9-negative PDACs, respectively, who underwent contrast-enhanced DECT before treatment between June 2019 and December 2021. The clinical, conventional CT qualitative, conventional CT quantitative, and DECT quantitative parameters of the two groups were compared using univariate analysis and selected by least absolute shrinkage and selection operator regression (LASSO) analysis. Multivariate logistic regression analyses were performed to build qualitative, conventional CT quantitative, DECT quantitative, and comprehensive models. The areas under the receiver operating characteristic curve (AUCs) of the models were compared using DeLong’s test.

Results

The AUCs of the DECT quantitative (based on normalized iodine concentrations [nICs] in the arterial and portal venous phases: 0.918; 95% confidence interval [CI] 0.852–0.985) and comprehensive (based on tumour location and nICs in the arterial and portal venous phases: 0.966; 95% CI 0.889–0.995) models were higher than those of the qualitative (based on tumour location: 0.782; 95% CI 0.665–0.899) and conventional CT quantitative (based on normalized conventional CT attenuation in the arterial phase: 0.665; 95% CI 0.533–0.797; all P < 0.05) models. The DECT quantitative and comprehensive models had comparable performances (P = 0.076).

Conclusions

Higher nICs in the arterial and portal venous phases were associated with higher blood supply improving the identification of non-hypervascular PNENs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jeon SK, Lee JM, Joo I, Lee ES, Park HJ, Jang JY, Ryu JK, Lee KB, Han JK (2017) Nonhypervascular pancreatic neuroendocrine tumors: differential diagnosis from pancreatic ductal adenocarcinomas at mr imaging—retrospective cross-sectional study. Radiology 284:77–87. https://doi.org/10.1148/radiol.2016160586

    Article  PubMed  Google Scholar 

  2. Dasari A, Shen C, Halperin D, Zhao B, Zhou S, Xu Y, Shih T, Yao JC (2017) Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol 3:1335–1342. https://doi.org/10.1001/jamaoncol.2017.0589

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kim JH, Eun HW, Kim YJ, Lee JM, Han JK, Choi BI (2016) Pancreatic neuroendocrine tumour (PNET): Staging accuracy of MDCT and its diagnostic performance for the differentiation of PNET with uncommon CT findings from pancreatic adenocarcinoma. Eur Radiol 26:1338–1347. https://doi.org/10.1007/s00330-015-3941-7

    Article  PubMed  Google Scholar 

  4. Karmazanovsky G, Belousova E, Schima W, Glotov A, Kalinin D, Kriger A (2019) Nonhypervascular pancreatic neuroendocrine tumors: Spectrum of MDCT imaging findings and differentiation from pancreatic ductal adenocarcinoma. Eur J Radiol 110:66–73. https://doi.org/10.1016/j.ejrad.2018.04.006

    Article  PubMed  Google Scholar 

  5. Tempero MA, Malafa MP, Al-Hawary M, Asbun H, Bain A, Behrman SW, Benson AB, Binder E, Cardin DB, Cha C, Chiorean EG, Chung V, Czito B, Dillhoff M, Dotan E, Ferrone CR, Hardacre J, Hawkins WG, Herman J, Ko AH, Komanduri S, Koong A, LoConte N, Lowy AM, Moravek C, Nakakura EK, O’Reilly EM, Obando J, Reddy S, Scaife C, Thayer S, Weekes CD, Wolff RA, Wolpin BM, Burns J, Darlow S (2017) Pancreatic adenocarcinoma, version 2.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 15:1028–1061. https://doi.org/10.6004/jnccn.2017.0131

    Article  PubMed  Google Scholar 

  6. He M, Liu Z, Lin Y, Wan J, Li J, Xu K, Wang Y, Jin Z, Tian J, Xue H (2019) Differentiation of atypical non-functional pancreatic neuroendocrine tumor and pancreatic ductal adenocarcinoma using CT based radiomics. Eur J Radiol 117:102–111. https://doi.org/10.1016/j.ejrad.2019.05.024

    Article  PubMed  Google Scholar 

  7. Falconi M, Eriksson B, Kaltsas G, Bartsch DK, Capdevila J, Caplin M, Kos-Kudla B, Kwekkeboom D, Rindi G, Klöppel G, Reed N, Kianmanesh R, Jensen RT, Anlauf M, Baudin E, Costa F, Cwikla JB, De Herder WW, Delle Fave G, Ferolla P, Ferone D, Garcia-Carbonero R, Gross D, Ito T, Kelestimur F, Knigge U, Krenning E, Niederle B, Öberg K, O’Connor J, O’Toole D, Pape UF, Pascher A, Pavel M, Perren A, Ramage JK, Raymond E, Ruszniewski P, Sedlackova E, Sorbye H, Sundin A, Taal B, Toumpanakis C, Weber W, Wiedenmann B, Zheng-Pei Z (2016) ENETS consensus guidelines update for the management of patients with functional pancreatic neuroendocrine tumors and non-functional pancreatic neuroendocrine tumors. Neuroendocrinology 103:153–171. https://doi.org/10.1159/000443171

    Article  CAS  PubMed  Google Scholar 

  8. Zhuge X, Guo C, Chen Y, Feng L, Jia R, Zhao Y, Sun K, Wang Z, Chen X (2018) The levels of tumor markers in pancreatic neuroendocrine carcinoma and their values in differentiation between pancreatic neuroendocrine carcinoma and pancreatic ductal adenocarcinoma. Pancreas 47:1290–1295. https://doi.org/10.1097/MPA.0000000000001181

    Article  CAS  PubMed  Google Scholar 

  9. Ohki K, Igarashi T, Ashida H, Shiraishi M, Nozawa Y, Ojiri H (2019) Differentiation between non-hypervascular pancreatic neuroendocrine tumour and pancreatic ductal adenocarcinoma on dynamic computed tomography and non-enhanced magnetic resonance imaging. Pol J Radiol 84:e153–e161. https://doi.org/10.5114/pjr.2019.84193

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ren S, Chen X, Wang Z, Zhao R, Wang J, Cui W, Wang Z (2019) Differentiation of hypovascular pancreatic neuroendocrine tumors from pancreatic ductal adenocarcinoma using contrast-enhanced computed tomography. PLoS ONE 14:e0211566. https://doi.org/10.1371/journal.pone.0211566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lin XZ, Wu ZY, Tao R, Guo Y, Li JY, Zhang J, Chen KM (2012) Dual energy spectral CT imaging of insulinoma—value in preoperative diagnosis compared with conventional multi-detector CT. Eur J Radiol 81:2487–2494. https://doi.org/10.1016/j.ejrad.2011.10.028

    Article  PubMed  Google Scholar 

  12. Yin Q, Zou X, Zai X, Wu Z, Wu Q, Jiang X, Chen H, Miao F (2015) Pancreatic ductal adenocarcinoma and chronic mass-forming pancreatitis: Differentiation with dual-energy MDCT in spectral imaging mode. Eur J Radiol 84:2470–2476. https://doi.org/10.1016/j.ejrad.2015.09.023

    Article  PubMed  Google Scholar 

  13. Li WX, Miao F, Xu XQ, Zhang J, Wu ZY, Chen KM, Yan FH, Lin XZ (2021) Pancreatic neuroendocrine neoplasms: CT spectral imaging in grading. Acad Radiol 28:208–216. https://doi.org/10.1016/j.acra.2020.01.033

    Article  PubMed  Google Scholar 

  14. Wang Y, Hu X, Shi S, Song C, Wang L, Yuan J, Lin Z, Cai H, Feng ST, Luo Y (2022) Utility of quantitative metrics from dual-layer spectral-detector CT for differentiation of pancreatic neuroendocrine tumor and neuroendocrine carcinoma. AJR Am J Roentgenol 218:999–1009. https://doi.org/10.2214/AJR.21.27017

    Article  PubMed  Google Scholar 

  15. Rindi G, Mete O, Uccella S, Basturk O, La Rosa S, Brosens LAA, Ezzat S, de Herder WW, Klimstra DS, Papotti M, Asa SL (2022) Overview of the 2022 WHO classification of neuroendocrine neoplasms. Endocr Pathol 33:115–154. https://doi.org/10.1007/s12022-022-09708-2

    Article  CAS  PubMed  Google Scholar 

  16. Wang W, Chai L, Zhu N, Wang Q, Zhou Y, Chai W (2022) Clinical significance of pancreatic calcifications: a 15-year single-center observational study. Eur J Med Res 27:99. https://doi.org/10.1186/s40001-022-00725-9

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang J, Chen X, Wang C, Cui W, Ren S, Wang Z, Li H, Wang Z (2019) Differentiation of aggressive from non-aggressive pancreatic solid pseudopapillary neoplasms using computed tomography. Abdom Radiol (NY) 44:2448–2458. https://doi.org/10.1007/s00261-019-01969-6

    Article  PubMed  Google Scholar 

  18. Al-Hawary MM, Francis IR, Chari ST, Fishman EK, Hough DM, Lu DS, Macari M, Megibow AJ, Miller FH, Mortele KJ, Merchant NB, Minter RM, Tamm EP, Sahani DV, Simeone DM (2014) Pancreatic ductal adenocarcinoma radiology reporting template: consensus statement of the society of abdominal radiology and the American Pancreatic Association. Gastroenterology 146:291-304.e1. https://doi.org/10.1053/j.gastro.2013.11.004

    Article  PubMed  Google Scholar 

  19. Luo Y, Dong Z, Chen J, Chan T, Lin Y, Chen M, Li ZP, Feng ST (2014) Pancreatic neuroendocrine tumours: correlation between MSCT features and pathological classification. Eur Radiol 24:2945–2952. https://doi.org/10.1007/s00330-014-3317-4

    Article  PubMed  Google Scholar 

  20. Park HJ, Kim HJ, Kim KW, Kim SY, Choi SH, You MW, Hwang HS, Hong SM (2020) Comparison between neuroendocrine carcinomas and well-differentiated neuroendocrine tumors of the pancreas using dynamic enhanced CT. Eur Radiol 30:4772–4782. https://doi.org/10.1007/s00330-020-06867-w

    Article  PubMed  Google Scholar 

  21. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247. https://doi.org/10.1016/j.ejca.2008.10.026

    Article  CAS  PubMed  Google Scholar 

  22. Amin MB, Edge SB, Greene FL, Byrd DR, Brookland RK, Washington MK, Gershenwald JE, Compton CC, Hess KR, Sullivan DC, Jessup JM, Brierley JD, Gaspar LE, Schilsky RL, Balch CM, Winchester DP, Asare EA, Madera M, Gress DM, Meyer LR (eds) (2017) AJCC cancer staging manual, 8th edn. Springer, New York

    Google Scholar 

  23. Wang P, Tang Z, Xiao Z, Hong R, Wang R, Wang Y, Zhan Y (2022) Dual-energy CT in differentiating benign sinonasal lesions from malignant ones: comparison with simulated single-energy CT, conventional MRI, and DWI. Eur Radiol 32:1095–1105. https://doi.org/10.1007/s00330-021-08159-3

    Article  PubMed  Google Scholar 

  24. Andersen MB, Ebbesen D, Thygesen J, Kruis M, Rasmussen F (2020) Impact of spectral body imaging in patients suspected for occult cancer: a prospective study of 503 patients. Eur Radiol 30:5539–5550. https://doi.org/10.1007/s00330-020-06878-7

    Article  PubMed  PubMed Central  Google Scholar 

  25. McCollough CH, Leng S, Yu L, Fletcher JG (2015) Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 276:637–653. https://doi.org/10.1148/radiol.2015142631

    Article  PubMed  Google Scholar 

  26. Kaltenbach B, Wichmann JL, Pfeifer S, Albrecht MH, Booz C, Lenga L, Hammerstingl R, D’Angelo T, Vogl TJ, Martin SS (2018) Iodine quantification to distinguish hepatic neuroendocrine tumor metastasis from hepatocellular carcinoma at dual-source dual-energy liver CT. Eur J Radiol 105:20–24. https://doi.org/10.1016/j.ejrad.2018.05.019

    Article  PubMed  Google Scholar 

  27. Rizzo S, Radice D, Femia M, De Marco P, Origgi D, Preda L, Barberis M, Vigorito R, Mauri G, Mauro A, Bellomi M (2018) Metastatic and non-metastatic lymph nodes: quantification and different distribution of iodine uptake assessed by dual-energy CT. Eur Radiol 28:760–769. https://doi.org/10.1007/s00330-017-5015-5

    Article  PubMed  Google Scholar 

  28. Euler A, Solomon J, Mazurowski MA, Samei E, Nelson RC (2019) How accurate and precise are CT based measurements of iodine concentration? A comparison of the minimum detectable concentration difference among single source and dual source dual energy CT in a phantom study. Eur Radiol 29:2069–2078. https://doi.org/10.1007/s00330-018-5736-0

    Article  PubMed  Google Scholar 

  29. Tang L, Li ZY, Li ZW, Zhang XP, Li YL, Li XT, Wang ZL, Ji JF, Sun YS (2015) Evaluating the response of gastric carcinomas to neoadjuvant chemotherapy using iodine concentration on spectral CT: a comparison with pathological regression. Clin Radiol 70:1198–1204. https://doi.org/10.1016/j.crad.2015.06.083

    Article  CAS  PubMed  Google Scholar 

  30. Hattori Y, Gabata T, Matsui O, Mochizuki K, Kitagawa H, Kayahara M, Ohta T, Nakanuma Y (2009) Enhancement patterns of pancreatic adenocarcinoma on conventional dynamic multi-detector row CT: correlation with angiogenesis and fibrosis. World J Gastroenterol 15:3114–3121. https://doi.org/10.3748/wjg.15.3114

    Article  PubMed  PubMed Central  Google Scholar 

  31. Liang HW, Zhou Y, Zhang ZW, Yan GW, Du SL, Zhang XH, Li XY, Lv FJ, Zheng Q, Li YM (2022) Dual-energy CT with virtual monoenergetic images to improve the visualization of pancreatic supplying arteries: the normal anatomy and variations. Insights Imaging 13:21. https://doi.org/10.1186/s13244-022-01157-z

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chen M, Li X, Wei Y, Qi L, Sun YS (2020) Spectral CT imaging parameters and Ki-67 labeling index in lung adenocarcinoma. Chin J Cancer Res 32:96–104. https://doi.org/10.21147/j.issn.1000-9604.2020.01.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hickethier T, Kroeger JR, Lennartz S, Doerner J, Maintz D, Chang DH (2020) Venous-phase chest CT with reduced contrast medium dose: utilization of spectral low keV monoenergetic images improves image quality. Eur J Radiol 122:108756. https://doi.org/10.1016/j.ejrad.2019.108756

    Article  PubMed  Google Scholar 

  34. Nagayama Y, Tanoue S, Inoue T, Oda S, Nakaura T, Utsunomiya D, Yamashita Y (2020) Dual-layer spectral CT improves image quality of multiphasic pancreas CT in patients with pancreatic ductal adenocarcinoma. Eur Radiol 30:394–403. https://doi.org/10.1007/s00330-019-06337-y

    Article  PubMed  Google Scholar 

  35. Zhou Z, Liu Y, Meng K, Guan W, He J, Liu S, Zhou Z (2019) Application of spectral CT imaging in evaluating lymph node metastasis in patients with gastric cancers: initial findings. Acta Radiol 60:415–424. https://doi.org/10.1177/0284185118786076

    Article  PubMed  Google Scholar 

  36. Zhang X, Duan H, Yu Y, Ma C, Ren Z, Lei Y, He T, Zhang M (2018) Differential diagnosis between benign and malignant pleural effusion with dual-energy spectral CT. PLoS ONE 13:e0193714. https://doi.org/10.1371/journal.pone.0193714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Matsumoto K, Jinzaki M, Tanami Y, Ueno A, Yamada M, Kuribayashi S (2011) Virtual monochromatic spectral imaging with fast kilovoltage switching: improved image quality as compared with that obtained with conventional 120-kVp CT. Radiology 259:257–262. https://doi.org/10.1148/radiol.11100978

    Article  PubMed  Google Scholar 

  38. Rajiah P, Parakh A, Kay F, Baruah D, Kambadakone AR, Leng S (2020) Update on multienergy CT: physics, principles, and applications. Radiographics 40:1284–1308. https://doi.org/10.1148/rg.2020200038

    Article  PubMed  Google Scholar 

  39. Rassouli N, Etesami M, Dhanantwari A, Rajiah P (2017) Detector-based spectral CT with a novel dual-layer technology: principles and applications. Insights Imaging 8:589–598. https://doi.org/10.1007/s13244-017-0571-4

    Article  PubMed  PubMed Central  Google Scholar 

  40. Liu YY, Zhang H, Wang L, Lin SS, Lu H, Liang HJ, Liang P, Li J, Lv PJ, Gao JB (2021) Predicting response to systemic chemotherapy for advanced gastric cancer using pre-treatment dual-energy CT radiomics: a pilot study. Front Oncol 11:740732. https://doi.org/10.3389/fonc.2021.740732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yu H, Huang Z, Li M, Wei Y, Zhang L, Yang C, Zhang Y, Song B (2020) Differential diagnosis of nonhypervascular pancreatic neuroendocrine neoplasms from pancreatic ductal adenocarcinomas, based on computed tomography radiological features and texture analysis. Acad Radiol 27:332–341. https://doi.org/10.1016/j.acra.2019.06.012

    Article  PubMed  Google Scholar 

  42. Wang Z, Chen X, Wang J, Cui W, Ren S, Wang Z (2020) Differentiating hypovascular pancreatic neuroendocrine tumors from pancreatic ductal adenocarcinoma based on CT texture analysis. Acta Radiol 61:595–604. https://doi.org/10.1177/0284185119875023

    Article  PubMed  Google Scholar 

  43. Xu J, Yang J, Feng Y, Zhang J, Zhang Y, Chang S, Jin J, Du X (2022) MRI feature-based nomogram model for discrimination between non-hypervascular pancreatic neuroendocrine tumors and pancreatic ductal adenocarcinomas. Front Oncol 12:856306. https://doi.org/10.3389/fonc.2022.856306

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zeng P, Ma L, Liu J, Song Z, Liu J, Yuan H (2022) The diagnostic value of intravoxel incoherent motion diffusion-weighted imaging for distinguishing nonhypervascular pancreatic neuroendocrine tumors from pancreatic ductal adenocarcinomas. Eur J Radiol 150:110261. https://doi.org/10.1016/j.ejrad.2022.110261

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Yuan Lin and Ling Xue (experts in pathology, The First Affiliated Hospital, Sun Yat-Sen University, China) provided the pathological analysis for this manuscript.

Funding

This study received funding from the National Natural Science Foundation of China (81801761 to Yanji Luo).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection and analysis were performed by XH, SS, and YW. The first draft of the manuscript was written by XH, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhenpeng Peng or Yanji Luo.

Ethics declarations

Conflict of interest

Weiwei Deng from Philips Healthcare provided technical support but has no conflict of interest. The other authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Ethical approval

The ethics committee of the First Affiliated Hospital, Sun Yat-Sen University, approved this retrospective single-centre study, and the requirement for informed consent was waived (Approval No.: 2021 [721]).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 116 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Shi, S., Wang, Y. et al. Dual-energy CT improves differentiation of non-hypervascular pancreatic neuroendocrine neoplasms from CA 19-9-negative pancreatic ductal adenocarcinomas. Radiol med 129, 1–13 (2024). https://doi.org/10.1007/s11547-023-01733-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-023-01733-3

Keywords

Navigation