Skip to main content
Log in

Non-covalent Complexes Between β-lactoglobulin and Baicalein: Characteristics and Binding Properties

  • RESEARCH
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

To better obtain protein–flavonoid complexes owned more powerful functions, non-covalent complexes between β-lactoglobulin (β-LG) and baicalein/p-coumaric acid/polydatin (Bai/p-CA/PD) were investigated. The properties of these complexes were investigated using ultraviolet (UV)-visible spectra, circular dichroism (CD) spectra, Fourier-transform infrared (FTIR), etc.; the non-covalent complexes' parameters were evaluated using fluorescence spectra and molecular docking. The peaks shifted in UV, and α-helix decreased in CD, confirming the formation of the complexes. The blue shift of amide bands and -OH peaks in FTIR indicated that the hydrophobic interactions and hydrogen bonds were strengthened. Differential scanning calorimetry (DSC) indicates that β-LG-Bai had heat resistance (improved melting peak: 188.8 °C to 195.8 °C). ABTS assay showed synergistic effects of β-LG-Bai (76.7% [β-LG-Bai] > 70.6% [β-LG + Bai], 50 μmol/L). Bai had a higher quenching ability (70.81%) than p-CA (38.69%) and PD (40.95%). The affinity order was Bai > PD > p-CA, and molecular docking binding energy (-6.02 [Bai], -5.39 [p-CA], and -5.4 kcal/mol [PD]) verified the affinity relationship. The binding constants increased with increasing temperature (2.166, 4.581, and 5.741, × 105 L/mol, for 298, 308, and 318 K, respectively), indicating that a higher temperature promoted stabilization of β-LG-Bai, which is consistent with hydrophobic interactions in molecular docking being the driving force of the β-LG-Bai complexes. The β-LG-Bai non-covalent complexes own synergistic antioxidant effects and improved high-temperature stability characteristics, which may have promising applications in functional foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

  1. X. Zhang, Y. Lu, R. Zhao, C. Wang, C. Wang, T. Zhang, Food Hydrocoll. 124, 107331 (2022). https://doi.org/10.1016/j.foodhyd.2021.107331

    Article  CAS  Google Scholar 

  2. L. Li, J. Zhao, T. Yang, B. Sun, Food Res. Int. 110956 (2022). https://doi.org/10.1016/j.foodres.2022.110956

  3. Y. Zhang, Y. Lu, Y. Yang, S. Li, C. Wang, C. Wang, T. Zhang, Food Biosci. 41, 101035 (2021). https://doi.org/10.1016/j.fbio.2021.101035

    Article  CAS  Google Scholar 

  4. Y. Li, D. He, B. Li, M.N. Lund, Y. Xing, Y. Wang, F. Li, X. Cao, Y. Liu, X. Chen, Trends Food Sci Technol. 110, 470–482 (2021). https://doi.org/10.1016/j.tifs.2021.02.009

    Article  CAS  Google Scholar 

  5. W.N. Baba, D.J. McClements, S. Maqsood, Food Chem. 365, 130455 (2021). https://doi.org/10.1016/j.foodchem.2021.130455

    Article  CAS  PubMed  Google Scholar 

  6. J. Chen, Y. Xu, B.A. Pius, P. Wang, X. Xu, LWT 137, 110404 (2021). https://doi.org/10.1016/j.lwt.2020.110404

    Article  CAS  Google Scholar 

  7. S.J. Pragasam, V. Venkatesan, M. Rasool, Inflammation 36, 169–176 (2013). https://doi.org/10.1007/s10753-012-9532-8

    Article  CAS  PubMed  Google Scholar 

  8. Y.C. Boo, Antioxidants 8(8), 275 (2019). https://doi.org/10.3390/antiox8080275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. G. Lanzilli, A. Cottarelli, G. Nicotera, S. Guida, G. Ravagnan, M.P. Fuggetta, Inflammation 35, 240–248 (2012). https://doi.org/10.1007/s10753-011-9310-z

    Article  CAS  PubMed  Google Scholar 

  10. K.M. Nieman, B.D. Anderson, C.J. Cifelli, J. Am. Coll. Nutr. 40(6), 571–582 (2021). https://doi.org/10.1080/07315724.2020.1800532

    Article  CAS  PubMed  Google Scholar 

  11. G.M. Tavares, T. Croguennec, A.F. Carvalho, S. Bouhallab, Trends Food Sci. Technol. 37(1), 5–20 (2014). https://doi.org/10.1016/j.tifs.2014.02.008

    Article  CAS  Google Scholar 

  12. X. Qie, W. Chen, M. Zeng, Z. Wang, J. Chen, H.D. Goff, Z. He, Food Hydrocoll. 121, 107059 (2021). https://doi.org/10.1016/j.foodhyd.2021.107059

    Article  CAS  Google Scholar 

  13. X. Li, T. Dai, P. Hu, C. Zhang, J. Chen, C. Liu, T. Li, Food Hydrocoll. 105, 105761 (2020). https://doi.org/10.1016/j.foodhyd.2020.105761

    Article  CAS  Google Scholar 

  14. H. Cheng, Z. Fang, A.M. Bakry, Y. Chen, L. Liang, Food Hydrocoll. 81, 242–252 (2018). https://doi.org/10.1016/j.foodhyd.2018.02.037

    Article  CAS  Google Scholar 

  15. E. Agadellis, A. Tartaglia, M. Locatelli, A. Kabir, K.G. Furton, V. Samanidou, Microchem. J. 159, 105437 (2020). https://doi.org/10.1016/j.microc.2020.105437

    Article  CAS  Google Scholar 

  16. L. Liang, M. Subirade, Food Chem. 132(4), 2023–2029 (2012). https://doi.org/10.1016/j.foodchem.2011.12.043

    Article  CAS  Google Scholar 

  17. S. Zhang, Z. Dongye, L. Wang, Z. Li, M. Kang, Y. Qian, X. Cheng, Y. Ren, C. Chen, J. Sci. Food Agric. (2023). https://doi.org/10.1002/jsfa.12611

    Article  PubMed  Google Scholar 

  18. A. Nikolaidis, M. Andreadis, T. Moschakis, Food Chem. 232, 425–433 (2017). https://doi.org/10.1016/j.foodchem.2017.04.022

    Article  CAS  PubMed  Google Scholar 

  19. D. Kong, C. Quan, Q. Xi, R. Han, P. Li, Q. Du, Y. Yang, J. Sun, M. Tamplin, J. Wang, Food Chem. 404, 134738 (2023). https://doi.org/10.1016/j.foodchem.2022.134738

    Article  CAS  PubMed  Google Scholar 

  20. B.C. Swain, S. Subadini, J. Rout, P.P. Mishra, H. Sahoo, U. Tripathy, Food Chem. 312, 126064 (2020). https://doi.org/10.1016/j.foodchem.2019.126064

    Article  CAS  PubMed  Google Scholar 

  21. L. Liang, H. Tajmir-Riahi, M. Subirade, Biomacromolecules 9(1), 50–56 (2008). https://doi.org/10.1021/bm700728k

    Article  CAS  PubMed  Google Scholar 

  22. Y. Lv, Q. Liang, Y. Li, X. Liu, D. Zhang, X. Li, Food Hydrocoll. 122, 107072 (2022). https://doi.org/10.1016/j.foodhyd.2021.107072

    Article  CAS  Google Scholar 

  23. F. Rostamnezhad, M.H. Fatemi, Spectrochim. Acta A Mol. Biomol. Spectrosc. 263, 120164 (2021). https://doi.org/10.1016/j.saa.2021.120164

    Article  CAS  PubMed  Google Scholar 

  24. Y. Lu, Y.-L. Wang, S.-H. Gao, G.-K. Wang, C.-L. Yan, D.-J. Chen, J. Lumin. 129(9), 1048–1054 (2009). https://doi.org/10.1016/j.jlumin.2009.04.030

    Article  CAS  Google Scholar 

  25. H. Wang, J. Zhu, H. Zhang, Q. Chen, B. Kong, J. Mol. Liq. 349, 118190 (2022). https://doi.org/10.1016/j.molliq.2021.118190

    Article  CAS  Google Scholar 

  26. J. Cheng, J.-H. Liu, G. Prasanna, P. Jing, Int. J. Biol. Macromol. 105, 965–972 (2017). https://doi.org/10.1016/j.ijbiomac.2017.07.119

    Article  CAS  PubMed  Google Scholar 

  27. N. Maftoonazad, M. Shahamirian, D. John, H. Ramaswamy, Mater. Sci. Eng. C. 94, 393–402 (2019). https://doi.org/10.1016/j.msec.2018.09.033

    Article  CAS  Google Scholar 

  28. Z. Zang, S. Chou, J. Tian, Y. Lang, Y. Shen, X. Ran, N. Gao, B. Li, Food Chem. 336, 127700 (2021). https://doi.org/10.1016/j.foodchem.2020.127700

    Article  CAS  PubMed  Google Scholar 

  29. W. He, H. Mu, Z. Liu, M. Lu, F. Hang, J. Chen, M. Zeng, F. Qin, Z. He, Food Res. Int. 107, 394–405 (2018). https://doi.org/10.1016/j.foodres.2018.02.064

    Article  CAS  PubMed  Google Scholar 

  30. M.A.B. Siddique, P. Maresca, G. Pataro, G. Ferrari, Food Res. Int. 87, 189–196 (2016). https://doi.org/10.1016/j.foodres.2016.07.017

    Article  CAS  PubMed  Google Scholar 

  31. Q. Wang, Y. Tang, Y. Yang, L. Lei, X. Lei, J. Zhao, Y. Zhang, L. Li, Q. Wang, J. Ming, Food Chem. 373, 131489 (2022). https://doi.org/10.1016/j.foodchem.2021.131489

    Article  CAS  PubMed  Google Scholar 

  32. Y. Meng, L. Hao, Y. Tan, Y. Yang, L. Liu, C. Li, P. Du, LWT 137, 110386 (2021). https://doi.org/10.1016/j.lwt.2020.110386

    Article  CAS  Google Scholar 

  33. Z.-W. Liu, Y.-X. Zhou, L.-H. Wang, Z. Ye, L.-J. Liu, J.-H. Cheng, F. Wang, A.E.-D. Bekhit, R.M. Aadil, Food Hydrocoll. 117, 106739 (2021). https://doi.org/10.1016/j.foodhyd.2021.106739

    Article  CAS  Google Scholar 

  34. X. Yin, X. Fu, H. Cheng, L. Liang, Food Hydrocoll. 106, 105895 (2020). https://doi.org/10.1016/j.foodhyd.2020.105895

    Article  CAS  Google Scholar 

  35. B. Hernández-Ledesma, L. Amigo, I. Recio, B. Bartolomé, J. Agric. Food Chem. 55(9), 3392–3397 (2007). https://doi.org/10.1021/jf063427j

    Article  CAS  PubMed  Google Scholar 

  36. X. Yin, H. Cheng, H. Dong, W. Huang, L. Liang, Antioxidants 11(4), 647 (2022). https://doi.org/10.3390/antiox11040647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. C. Kanakis, I. Hasni, P. Bourassa, P. Tarantilis, M. Polissiou, H.-A. Tajmir-Riahi, Food Chem. 127(3), 1046–1055 (2011). https://doi.org/10.1016/j.foodchem.2011.01.079

    Article  CAS  PubMed  Google Scholar 

  38. T. Richard, D. Lefeuvre, A. Descendit, S. Quideau, J. Monti, Biochim. Biophys. Acta Gen. Subj. 1760(6), 951–958 (2006). https://doi.org/10.1016/j.bbagen.2006.01.005

    Article  CAS  Google Scholar 

  39. W. Chen, H. Yu, R. Shi, C. Ma, M.-A. Gantumur, A. Qayum, A. Bilawal, G. Liang, K.-C. Oh, Z. Jiang, Food Hydrocoll. 116, 106662 (2021). https://doi.org/10.1016/j.foodhyd.2021.106662

    Article  CAS  Google Scholar 

  40. J. Tang, C. Yang, L. Zhou et al., Spectrochim. Acta A Mol. Biomol. Spectrosc. 96, 461–467 (2012). https://doi.org/10.1016/j.saa.2012.05.059

    Article  ADS  CAS  PubMed  Google Scholar 

  41. R. Quds, M.A. Hashmi, Z. Iqbal, R. Mahmood, Spectrochim. Acta A Mol. Biomol. Spectrosc. 280, 121503 (2022). https://doi.org/10.1016/j.saa.2022.121503

    Article  CAS  PubMed  Google Scholar 

  42. T. Niu, X. Zhu, D. Zhao, H. Li, P. Yan, L. Zhao, W. Zhang, P. Zhao, B. Mao, Spectrochim. Acta A Mol. Biomol. Spectrosc. 285, 121871 (2023). https://doi.org/10.1016/j.saa.2022.121871

    Article  CAS  PubMed  Google Scholar 

  43. Z. Ma, P. Jing, Int. J. Biol. Macromol. 146, 1030–1039 (2020). https://doi.org/10.1016/j.ijbiomac.2019.10.052

    Article  CAS  PubMed  Google Scholar 

  44. I.J. Joye, G. Davidov-Pardo, R.D. Ludescher, D.J. McClements, Food Chem. 185, 261–267 (2015). https://doi.org/10.1016/j.foodchem.2015.03.128

    Article  CAS  PubMed  Google Scholar 

  45. P.D. Ross, S. Subramanian, Biochemistry 20(11), 3096–3102 (1981). https://doi.org/10.1021/bi00514a017

    Article  CAS  PubMed  Google Scholar 

  46. Y. Fan, Q. He, C. Gan, Z. Wen, J. Yi, Food Chem. 384, 132509 (2022). https://doi.org/10.1016/j.foodchem.2022.132509

    Article  CAS  PubMed  Google Scholar 

  47. C. Raghu, H. Arjun, P. Anantharaman, Carbohydr. Polym. 209, 350–355 (2019). https://doi.org/10.1016/j.carbpol.2019.01.039

    Article  CAS  PubMed  Google Scholar 

  48. F. Pan, J. Li, L. Zhao, T. Tuersuntuoheti, A. Mehmood, N. Zhou, S. Hao, C. Wang, Y. Guo, W. Lin, J. Food Biochem. 45(1), e13570 (2021). https://doi.org/10.1111/jfbc.13570

    Article  CAS  PubMed  Google Scholar 

  49. J. Huang, Z. He, R. Cheng, Z. Cheng, S. Wang, X. Wu, B. Niu, G.X. Shen, X. Liao, Spectrochim. Acta A Mol. Biomol. Spectrosc. 243, 118731 (2020). https://doi.org/10.1016/j.saa.2020.118731

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Qingdao Science and Technology Benefiting the People Demonstration Special Guidance (22-1-3-8-zyyd-nsh), Shandong Natural Science Foundation (ZR2023MC111), and Shandong Science and Technology Small and Medium Enterprise Innovation Ability Enhancement Project (2023TSGC0379).

Author information

Authors and Affiliations

Authors

Contributions

Mengchen Kang: Methodology, Software, Validation, Investigation, Formal analysis, Data curation, Writing – Original Draft. Dehong Du: Methodology, Investigation, Formal analysis. Suzhi Zhang: Resources, Supervision, Funding acquisition. Shuangling Zhang: Conceptualization, Resources, Writing – Review & Editing, Supervision, Project administration, Funding acquisition. Zhenru Li: Writing – Review & Editing, Visualization. Zixuan Dongye: Writing—Review & Editing. Li Wang: Supervision. Yaru Qian and Chengwang Chen: Formal analysis. Xiaofang Cheng, Yuhang Ren and Bingnan Zhao: Supervision, Formal analysis.

Corresponding author

Correspondence to Shuangling Zhang.

Ethics declarations

Ethics Approval

Ethics approval was not required for this research.

Conflict of Interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, M., Du, D., Zhang, S. et al. Non-covalent Complexes Between β-lactoglobulin and Baicalein: Characteristics and Binding Properties. Food Biophysics 19, 58–70 (2024). https://doi.org/10.1007/s11483-023-09804-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-023-09804-8

Keywords

Navigation