Skip to main content
Log in

Effect of Transglutaminase on Structure and Gelation Properties of Mung Bean Protein Gel

  • Research
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the effect of transglutaminase (TGase) treatment on structure and gelation properties of mung bean protein gel (MBPG). Structure properties for MBPG were determined by surface hydrophobicity, free sulfhydryl groups, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), Fourier transform infrared spectra (FTIR), intermolecular forces and scanning electron microscopy (SEM). And the gelation properties of MBPG were characterized by rheological properties, textural properties, and water holding capacity (WHC). TGase treatment reduced surface hydrophobicity and free sulfhydryl group content of MBPG. SDS-PAGE showed that TGase cross-linking caused the protein band of TGase-induced MBPG to become shallow or disappear, especially 50.1 kDa band. In addition, TGase treatment changed the secondary structure of MBPG, with a reduction in β-sheet and an increase in β-turn and random coil. Intermolecular forces analysis manifested that covalent cross-linking and disulfide bonds were the primary forces involved in TGase-induced MBPG, and TGase treatment limited non-covalent interactions. SEM images indicated that the network structure of TGase-induced MBPG was more compact with smaller and more uniform pores than that of the control, especially at 30 U/g. Compared with the control, storage modulus (G′), hardness, chewiness, springiness, cohesiveness and WHC of 30 U/g TGase-induced MBPG reached the maximum of 45537 Pa, 1337.59 g, 1111.43, 0.99, 0.93, 87.0%, respectively. The results of this study showed that TGase treatment was a reliable method to improve the gelation properties of MBPG, especially at 30 U/g.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.C. Alves, G.M. Tavares, Food Hydrocoll. 97, 105171 (2019)

    Article  CAS  Google Scholar 

  2. F.-F. Liu, Y.-Q. Li, C.-Y. Wang, Y. Liang, X.-Z. Zhao, J.-X. He, H.-Z. Mo, Food Chem. 393, 133397 (2022)

    Article  CAS  PubMed  Google Scholar 

  3. J. Xie, M. Du, M. Shen, T. Wu, L. Lin, Food Chem. 270, 243 (2019)

    Article  CAS  PubMed  Google Scholar 

  4. N. Gupta, N. Srivastava, S.S. Bhagyawant, PLoS ONE 13, e0191265 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  5. F.-F. Liu, Y.-Q. Li, C.-Y. Wang, X.-Z. Zhao, Y. Liang, J.-X. He, H.-Z. Mo, Process Biochem. 111, 274 (2021)

    Article  CAS  Google Scholar 

  6. Z. Zhong, Y.L. Xiong, Ultrason. Sonochem. 62, 104908 (2020)

    Article  CAS  PubMed  Google Scholar 

  7. Y. Nie, Y. Liu, J. Jiang, Y.L. Xiong, X. Zhao, Food Hydrocoll. 129, 107607 (2022)

    Article  CAS  Google Scholar 

  8. Q. Cui, G. Wang, D. Gao, L. Wang, A. Zhang, X. Wang, N. Xu, L. Jiang, Process Biochem. 91, 104 (2020)

    Article  CAS  Google Scholar 

  9. B. Herranz, C.A. Tovar, A.J. Borderias, H.M. Moreno, Innovative Food Sci. Emerging Technol. 20, 24 (2013)

    Article  CAS  Google Scholar 

  10. N. Chen, M. Zhao, C. Chassenieux, T. Nicolai, Food Hydrocoll. 70, 88 (2017)

    Article  CAS  Google Scholar 

  11. O. Nivala, E. Nordlund, K. Kruus, D. Ercili-Cura, LWT-Food. Sci. Technol. 139, 110517 (2021)

    CAS  Google Scholar 

  12. T.G. Kudre, S. Benjakul, Food Biophys. 8, 240 (2013)

    Article  Google Scholar 

  13. Y. Li, S. Damodaran, Food Chem. 221, 1151 (2017)

    Article  CAS  PubMed  Google Scholar 

  14. M. Jin, Q. Zhong, J. Food Eng. 115, 33 (2013)

    Article  CAS  Google Scholar 

  15. S.B.M. Yasir, K.H. Sutton, M.P. Newberry, N.R. Andrews, J.A. Gerrard, Food Chem. 104, 1491 (2007)

    Article  Google Scholar 

  16. X.D. Sun, S.D. Arntfield, Food Hydrocoll. 25, 25 (2011)

    Article  CAS  Google Scholar 

  17. M.H. Norziah, A. Al-Hassan, A.B. Khairulnizam, M.N. Mordi, M. Norita, Food Hydrocoll. 23, 1610 (2009)

    Article  CAS  Google Scholar 

  18. N.K.K. Kamizake, M.M. Gonçalves, C.T.B.V. Zaia, D.A.M. Zaia, J. Food Compos. Anal. 16, 507 (2003)

    Article  CAS  Google Scholar 

  19. X. Wen, F. Jin, J.M. Regenstein, F. Wang, Food Biosci. 26, 15 (2018)

    Article  CAS  Google Scholar 

  20. Y. Li, X. Li, J. Wang, C. Zhang, H. Sun, C. Wang, X. Xie, Food Biophys. 9, 169 (2014)

    Article  Google Scholar 

  21. X. Liang, C. Ma, X. Yan, H. Zeng, D.J. McClements, X. Liu, F. Liu, Food Hydrocoll. 102, 105569 (2020)

    Article  CAS  Google Scholar 

  22. D. Jia, Q. Huang, S. Xiong, Food Chem. 196, 1180 (2016)

    Article  CAS  PubMed  Google Scholar 

  23. M.A.K. Markwell, S.M. Haas, L.L. Bieber, N.E. Tolbert, Anal. Biochem. 87, 206 (1978)

    Article  CAS  PubMed  Google Scholar 

  24. M.R. Salahi, S.M.A. Razavi, M. Mohebbi, Food Biophys. 17, 635 (2022)

    Article  Google Scholar 

  25. S. Patole, L. Cheng, Z. Yang, Food Biophys. 17, 314 (2022)

    Article  Google Scholar 

  26. N. Yu, F. Yang, H. Gong, J. Zhou, C. Jie, W. Wang, X. Chen, L. Sun, J. Food Eng. 323, 111006 (2022)

    Article  CAS  Google Scholar 

  27. Q. Fang, L. Shi, Z. Ren, G. Hao, J. Chen, W. Weng, LWT-Food. Sci. Technol. 146, 111513 (2021)

    CAS  Google Scholar 

  28. M. Zhang, Y. Yang, N.C. Acevedo, Food Chem. 318, 126421 (2020)

    Article  CAS  PubMed  Google Scholar 

  29. K. Agyare, Y. Xiong, K. Addo, Food Chem. S0308814607009545 (2007)

  30. X.-S. Qin, S.-Z. Luo, J. Cai, X.-Y. Zhong, S.-T. Jiang, Y.-Y. Zhao, Z. Zheng, Ultrason. Sonochem. 31, 590 (2016)

    Article  CAS  PubMed  Google Scholar 

  31. C.-H. Tang, X. Sun, S.-W. Yin, C.-Y. Ma, Food Res. Int. 41, 941 (2008)

    Article  CAS  Google Scholar 

  32. X. Zhou, Y. Zheng, Y. Zhong, D. Wang, Y. Deng, Food Chem. 383, 132366 (2022)

    Article  CAS  PubMed  Google Scholar 

  33. Z.-Z. Hu, X.-M. Sha, T. Huang, L. Zhang, G.-Y. Wang, Z.-C. Tu, Food Chem. 348, 129093 (2021)

    Article  CAS  PubMed  Google Scholar 

  34. X. Deng, Y. Ma, Y. Lei, X. Zhu, L. Zhang, L. Hu, S. Lu, X. Guo, J. Zhang, Ultrason. Sonochem. 76, 105659 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. K. Yokoyama, N. Nio, Y. Kikuchi, Appl. Microbiol. Biotechnol. 64, 447 (2004)

    Article  CAS  PubMed  Google Scholar 

  36. N. Aktaş, B. Kılıç, LWT-Food. Sci. Technol. 38, 815 (2005)

    Google Scholar 

  37. Q.-Q. Zhang, Inner Mongol University of Technology (China). (2021)

  38. A.M. Herrero, M.I. Cambero, J.A. Ordóñez, L. de la Hoz, P. Carmona, Food Chem. 109, 25 (2008)

    Article  CAS  PubMed  Google Scholar 

  39. K. Luo, S. Liu, S. Miao, B. Adhikari, X. Wang, J. Chen, J. Food Eng. 263, 280 (2019)

    Article  CAS  Google Scholar 

  40. K. Wang, S. Luo, J. Cai, Q. Sun, Y. Zhao, X. Zhong, S. Jiang, Z. Zheng, Food Chem. 197, 168 (2016)

    Article  CAS  PubMed  Google Scholar 

  41. Y.-Y. Wang, J.-K. Yan, Y. Ding, M.T. Rashid, H. Ma, LWT-Food. Sci. Technol. 150, 111922 (2021)

    CAS  Google Scholar 

  42. A.S. Eissa, S.A. Khan, Food Hydrocoll. 20, 543 (2006)

    Article  CAS  Google Scholar 

  43. Y. Hu, W. Liu, C. Yuan, K. Morioka, S. Chen, D. Liu, X. Ye, Food Chem. 176, 115 (2015)

    Article  CAS  PubMed  Google Scholar 

  44. S. Qian, P. Dou, J. Wang, L. Chen, X. Xu, G. Zhou, B. Zhu, N. Ullah, X. Feng, Food Chem. 349, 129066 (2021)

    Article  CAS  PubMed  Google Scholar 

  45. C. Chen, P. Wang, N. Zhang, W. Zhang, F. Ren, LWT-Food. Sci. Technol. 103, 53 (2019)

    CAS  Google Scholar 

  46. G. Oliver, P. E. Pritchard, in Food Colloids and Polymers, edited by E. Dickinson and P. Walstra (Woodhead Publishing, 2005), pp. 255-259

  47. X.D. Sun, S.D. Arntfield, J. Food Eng. 107, 226 (2011)

    Article  CAS  Google Scholar 

  48. T. Xing, Y. Xu, J. Qi, X. Xu, X. Zhao, Food Chem. 347, 129031 (2021)

    Article  CAS  PubMed  Google Scholar 

  49. F. Alavi, Z. Emam-Djomeh, L. Chen, Food Hydrocoll. 107, 105960 (2020)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Pilot project of science, education and industrialization: major innovation project, exploitation of key technology and demonstration of industrialization for healthy food [2022JBZ01-08]; Science and Technology Cooperation Project of Shandong Province and Chongqing Municipality [2021LYXZ018]; Key Plan of Studying and Developing (Major scientific and technological innovation project) in Shandong Province, China [2020CXGC010604]; Project of postgraduate cultivation, achievement of excellent postgraduate, study and practice of multidimensional cultivation for innovative ability of food specialty postgraduate [24221515]; National Natural Science Foundation of China [31371839]; Natural Science Foundation of Shandong Province, China [Grant No. ZR2020QC221]; National Natural Science Foundation of China [Grant No. 32201970].

Author information

Authors and Affiliations

Authors

Contributions

Rui-Xue Wang: Writing-original draft. Ying-Qiu Li: Conceptualization, Methodology, Funding acquisition. Rui-Xue Wang, Gui-Jin Sun, Chen-Ying Wang, Yan Liang, Dong-Liang Hua, Lei Chen and Hai-Zhen Mo: Investigation. Rui-Xue Wang, Gui-Jin Sun and Chen-Ying Wang: Formal analysis.

Corresponding author

Correspondence to Ying-Qiu Li.

Ethics declarations

Conflict of Interest

The authors confirm that they have no conflicts of interest with respect to the work described in this manuscript

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, RX., Li, YQ., Sun, GJ. et al. Effect of Transglutaminase on Structure and Gelation Properties of Mung Bean Protein Gel. Food Biophysics 18, 421–432 (2023). https://doi.org/10.1007/s11483-023-09784-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-023-09784-9

Keywords

Navigation