Skip to main content
Log in

Dual-Band High-Efficiency Transmissive Single Substrate Layer Metasurface with Complex-Amplitude Modulations

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Multiwavelength metasurfaces with complex-amplitude modulations have attracted great attention due to their unprecedented abilities for electromagnetic wavefront manipulations. In this work, a novel dual-band high-efficiency transmissive complex-amplitude meta-atom is proposed, which is composed of two identical metallic-patterned layers printed on both sides of a substrate. Each metallic layer is perforated with a double-C-shaped split-ring resonator and a single C-slot resonator, which could achieve efficient cross-polarized conversions of over 80% at two operation frequencies under a circular polarization incidence. In addition, an isolation ring is ingeniously positioned between the two resonators to effectively reduce the mutual coupling. By adjusting the rotation angles of the two resonators, 2π phase modulation and amplitude modulation from a maximum value to zero can be individually realized at both frequencies. As a proof-of-concept demonstration, a dual-band meta-hologram is numerically studied and experimentally verified. This proposed method holds great potential across multifunctional applications such as data storage, information encryption, and virtual reality display.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

The data supporting the findings in this work are available from the corresponding author with reasonable request.

References

  1. Ni X, Emani NK, Kildishev AV et al (2012) Broadband light bending with plasmonic nanoantennas. Science 335:427–427. https://doi.org/10.1126/science.1214686

    Article  PubMed  CAS  Google Scholar 

  2. Yu N, Capasso F (2014) Flat optics with designer metasurfaces. Nature Mater 13:139–150. https://doi.org/10.1038/nmat3839

    Article  CAS  Google Scholar 

  3. Mao R, Wang G, Cai T et al (2020) Ultra-thin and high-efficiency full-space Pancharatnam-Berry metasurface. Opt Express 28:31216. https://doi.org/10.1364/OE.405086

    Article  PubMed  Google Scholar 

  4. Xiong C, Zhang X, Xu Q et al (2022) Polarization-insensitive amplitude and phase control based on interference metasurface. Appl Phys Lett 121:201707. https://doi.org/10.1063/5.0114017

    Article  CAS  Google Scholar 

  5. Díaz-Rubio A, Asadchy VS, Elsakka A, Tretyakov SA (2017) From the generalized reflection law to the realization of perfect anomalous reflectors. Sci Adv 3:e1602714. https://doi.org/10.1126/sciadv.1602714

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liu B, He Y, Wong S, Li Y (2021) Multifunctional vortex beam generation by a dynamic reflective metasurface. Adv Opt Mater 9:2001689. https://doi.org/10.1002/adom.202001689

    Article  CAS  Google Scholar 

  7. Bai X, Zhang F, Sun L et al (2022) Radiation-type programmable metasurface for direct manipulation of electromagnetic emission. Laser Photonics Rev 16:2200140. https://doi.org/10.1002/lpor.202200140

    Article  Google Scholar 

  8. Li H, Wang G, Cai T et al (2019) Wideband transparent beam-forming metadevice with amplitude- and phase-controlled metasurface. Phys Rev Applied 11:014043. https://doi.org/10.1103/PhysRevApplied.11.014043

    Article  CAS  Google Scholar 

  9. Yang J, Chen J, Quan L et al (2022) Flexible beamforming using transmission-type coding metasurface. J Phys D Appl Phys 55:345006. https://doi.org/10.1088/1361-6463/ac747f

    Article  Google Scholar 

  10. Wang Q, Zhang X, Xu Y et al (2016) Broadband metasurface holograms: toward complete phase and amplitude engineering. Sci Rep 6:32867. https://doi.org/10.1038/srep32867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Sun Q, Zhang Z, Huang Y et al (2019) Asymmetric transmission and wavefront manipulation toward dual-frequency meta-holograms. ACS Photonics 6:1541–1546. https://doi.org/10.1021/acsphotonics.9b00303

    Article  CAS  Google Scholar 

  12. Wei Q, Huang L, Zhao R et al (2022) Rotational multiplexing method based on cascaded metasurface holography. Adv Opt Mater 10:2102166. https://doi.org/10.1002/adom.202102166

    Article  CAS  Google Scholar 

  13. Yu N, Genevet P, Kats MA et al (2011) Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334:333–337. https://doi.org/10.1126/science.1210713

    Article  PubMed  CAS  Google Scholar 

  14. Gabor D (1948) A new microscopic principle. Nature 161:777–778. https://doi.org/10.1038/161777a0

    Article  PubMed  CAS  Google Scholar 

  15. Zhu L, Zhou W, Dong L et al (2022) Full space control of meta-holograms utilizing a bilayered patterned coding metasurface. Antennas Wirel Propag Lett 21:322–326. https://doi.org/10.1109/LAWP.2021.3130608

    Article  Google Scholar 

  16. Li Z, Liu J, Zhang J et al (2022) Shaping electromagnetic fields with irregular metasurface. Adv Mater Technol 7:2200035. https://doi.org/10.1002/admt.202200035

    Article  Google Scholar 

  17. Shao L, Li Z, Zhang Z et al (2022) Multi-channel metasurface for versatile wavefront and polarization manipulation. Adv Mater Technol 7:2200524. https://doi.org/10.1002/admt.202200524

    Article  Google Scholar 

  18. Ren H, Shao W, Li Y et al (2020) Three-dimensional vectorial holography based on machine learning inverse design. Sci Adv 6:eaaz4261. https://doi.org/10.1126/sciadv.aaz4261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. He L, Liu K, He Z, Cao L (2023) Three-dimensional holographic communication system for the metaverse. Opt Commun 526:128894. https://doi.org/10.1016/j.optcom.2022.128894

    Article  CAS  Google Scholar 

  20. Chen WT, Yang K-Y, Wang C-M et al (2014) High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett 14:225–230. https://doi.org/10.1021/nl403811d

    Article  PubMed  CAS  Google Scholar 

  21. Zheng G, Mühlenbernd H, Kenney M et al (2015) Metasurface holograms reaching 80% efficiency. Nature Nanotech 10:308–312. https://doi.org/10.1038/nnano.2015.2

    Article  CAS  Google Scholar 

  22. Hu Y, Luo X, Chen Y et al (2019) 3D-Integrated metasurfaces for full-colour holography. Light Sci Appl 8:86. https://doi.org/10.1038/s41377-019-0198-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Zhang F, Pu M, Gao P et al (2020) Simultaneous full-color printing and holography enabled by centimeter-scale plasmonic metasurfaces. Adv Sci 7:1903156. https://doi.org/10.1002/advs.201903156

    Article  CAS  Google Scholar 

  24. Yan J, Wei Q, Liu Y et al (2022) Single pixel imaging key for holographic encryption based on spatial multiplexing metasurface. Small 18:2203197. https://doi.org/10.1002/smll.202203197

    Article  CAS  Google Scholar 

  25. Yuan H, Zhong Z, Zhang Y, Zhang B (2023) Multi-channel image encryption based on an all-dielectric metasurface incorporating near-field nanoprinting and far-field holography. Adv Opt Mater. https://doi.org/10.1002/adom.202300352

    Article  Google Scholar 

  26. Li L, Cui TJ, Ji W et al (2017) Electromagnetic reprogrammable coding-metasurface holograms. Nat Commun 8:197. https://doi.org/10.1038/s41467-017-00164-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Zheng G, Zhou N, Deng L et al (2021) Full-space metasurface holograms in the visible range. Opt Express 29:2920. https://doi.org/10.1364/OE.417202

    Article  PubMed  CAS  Google Scholar 

  28. Deng L, Li Z, Zhou Z et al (2022) Bilayer-metasurface design, fabrication, and functionalization for full-space light manipulation. Adv Opt Mater 10:2102179. https://doi.org/10.1002/adom.202102179

    Article  CAS  Google Scholar 

  29. Zhu L, Zhou WJ, Dong L et al (2022) Multifunctional full-space metahologram employing a monolayer phase-encoding metasurface. Phys Rev Appl 18:054080. https://doi.org/10.1103/PhysRevApplied.18.054080

    Article  CAS  Google Scholar 

  30. Zhang Q, Wang J, Xie R et al (2023) Four-channel joint-polarization-frequency-multiplexing encryption meta-hologram based on dual-band polarization multiplexing meta-atoms. Opt Express 31:17569. https://doi.org/10.1364/OE.487483

    Article  PubMed  CAS  Google Scholar 

  31. Jia SL, Wan X, Su P et al (2016) Broadband metasurface for independent control of reflected amplitude and phase. AIP Adv 6:045024. https://doi.org/10.1063/1.4948513

    Article  Google Scholar 

  32. Li H-P, Wang G-M, Cai T et al (2018) Phase- and amplitude-control metasurfaces for antenna main-lobe and sidelobe manipulations. IEEE Trans Antennas Propag 66:5121–5129. https://doi.org/10.1109/TAP.2018.2858181

    Article  Google Scholar 

  33. Bao L, Wu RY, Fu X et al (2019) Multi-beam forming and controls by metasurface with phase and amplitude modulations. IEEE Trans Antennas Propag 67:6680–6685. https://doi.org/10.1109/TAP.2019.2925289

    Article  Google Scholar 

  34. Ding G, Chen K, Luo X et al (2020) Direct routing of intensity-editable multi-beams by dual geometric phase interference in metasurface. Nanophotonics 9:2977–2987. https://doi.org/10.1515/nanoph-2020-0203

    Article  Google Scholar 

  35. Li XM, Xi X, Chen J et al (2022) Stereo meta-atom enabled phase–amplitude gradient metasurface for circularly polarized waves. Adv Opt Mater 10:2200326. https://doi.org/10.1002/adom.202200326

    Article  CAS  Google Scholar 

  36. Li Q, Wu C, Zhang Z et al (2023) High-purity multi-mode vortex beam generation with full complex-amplitude-controllable metasurface. IEEE Trans Antennas Propag 71:774–782. https://doi.org/10.1109/TAP.2022.3217192

    Article  Google Scholar 

  37. Xie R, Xin M, Chen S et al (2020) Frequency-multiplexed complex-amplitude meta-devices based on bispectral 2-bit coding meta-atoms. Adv Opt Mater 8:2000919. https://doi.org/10.1002/adom.202000919

    Article  CAS  Google Scholar 

  38. Faraz F, Huang Y, Liu H et al (2023) High-efficiency dual-band metasurface with independent multifold geometric phases. Adv Opt Mater. https://doi.org/10.1002/adom.202300347

    Article  Google Scholar 

  39. Xie R, Gu Z, Zhang D et al (2022) High-efficiency full-space complex-amplitude metasurfaces enabled by a bi-spectral single-substrate-layer meta-atom. Adv Opt Mater 10:2102084. https://doi.org/10.1002/adom.202102084

    Article  CAS  Google Scholar 

Download references

Funding

National Natural Science Foundation of China under Grants 62171186, China Postdoctoral Science Foundation under grant 2023M731827.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Xiang Wang and Jun Ding; methodology: Xiang Wang and Yazhou Shi; formal analysis and investigation: Yazhou Shi, Xiang Wang and Zhen Gu; experimentation: Xiang Wang, Zhen Gu, Xiong Wang and Haoyang Liu; writing—original draft preparation: Xiang Wang; writing—review and editing: Jun Ding and Rensheng Xie.

Corresponding authors

Correspondence to Rensheng Xie or Jun Ding.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 143 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Shi, Y., Gu, Z. et al. Dual-Band High-Efficiency Transmissive Single Substrate Layer Metasurface with Complex-Amplitude Modulations. Plasmonics (2023). https://doi.org/10.1007/s11468-023-02145-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-023-02145-9

Keywords

Navigation