Skip to main content
Log in

Comparative Analysis of Different Dielectric Buffer Layer in a Highly Sensitive Long-Range Surface Plasmon Resonance Imaging Sensor Having PtSe2 and Heterostructure of BlueP/MoS2

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This manuscript presents a Kretschmann configured long-range surface plasmon resonance (LRSPR) imaging sensor (structure: 2S2G prism-MgF2-Ag-PtSe2-BlueP/MoS2-SM) demonstrating ultrahigh imaging sensitivity, SImg. (23,250 RIU−1); detection accuracy, DA (50 Deg.−1); angular figure of merit, FoMAng. (1930.87 RIU−1); imaging figure of merit, FoMImg. (1,162,500 Deg.−1 RIU−1); and better penetration depth, PD (1129.4 nm), for sensing of biomolecules. The MATLAB and COMSOL simulation software are used for numerical analysis of the results. The effect of different dielectric buffer layers, DBLs (MgF2, LiF, Cytop & Teflon), and Ag/Au thin metal films on sensor performance has been substantiated to find the best suited DBL and metal film. The use of PtSe2 leads to further enhance sensor performance due to its high carrier mobility, tunable bandgap, chemical stability, and immunity to toxicity. Heterostructure of BlueP/MoS2 plays an important role in attachment of biomolecules due to larger surface area and higher optical adsorption efficiency (5%), quantum confinement effect of MoS2. Furthermore, heterostructure of BlueP/MoS2 leads to improve the sensor performance parameters due to high charge carrier transfer efficiency. Overall, larger PD of proposed LRSPR sensor is suitable to detect larger size biomolecules. Hence, the proposed sensor performance paves a way for its efficient use in field of biological molecule sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of Data and Materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Liu Wei, Liu Chao, Wang Jianxin, Lv Jingwei, Lv Yan, Yang Lin, An Ni, Yi Zao, Liu Qiang, Chunjie Hu, Chu Paul K (2023) Surface plasmon resonance sensor composed of microstructured optical fibers for monitoring of external and internal environments in biological and environmental sensing. Results Phys 47:106365. https://doi.org/10.1016/j.rinp.2023.106365

    Article  Google Scholar 

  2. Zhou Jinru, Qi Qinqin, Wang Chong, Qian Yifan, Liu Guangming, Wang Yanbo, Linglin Fu (2019) S urface plasmon resonance (SPR) biosensors for food allergen detection in food matrices. Biosens Bioelectron 142:111449. https://doi.org/10.1016/j.bios.2019.111449

    Article  CAS  PubMed  Google Scholar 

  3. Masson Jean-Francois (2017) Surface plasmon resonance clinical biosensors for medical diagnostics. ACS Sens 2(1):16–30. https://doi.org/10.1021/acssensors.6b00763

    Article  CAS  PubMed  Google Scholar 

  4. Park JH, Cho YW, Kim TH (2022) Recent advances in surface plasmon resonance sensors for sensitive optical detection of pathogens. Biosensors (Basel) 12(3):180. https://doi.org/10.3390/bios12030180. PMID:35323450;PMCID:PMC8946561

    Article  CAS  PubMed  Google Scholar 

  5. Hamola Jiri (2003) Present and future of surface plasmon resonance biosensor. Anal Bioanal Chem 377:528–539. https://doi.org/10.1007/s00216-003-2101

    Article  Google Scholar 

  6. Hoa XD, Kirk AG, Tabrizian M (2007) Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Biosens Bioelectron 23(2):151–160. https://doi.org/10.1016/j.bios.2007.07.001

    Article  CAS  PubMed  Google Scholar 

  7. Jaiswal SK, Maurya JB, Prajapati YK (2022) Field-dependent performance parameters of a plasmonic structure: an analysis of penetration depth and propagation length. J Opt Soc Am B 39. https://doi.org/10.1364/josab.443940

  8. Singh MK, Verma VK, Pal S, Prajapati YK, Saini JP (2021) Antimonene mediated long-range SPR imaging sensor with ultrahigh imaging sensitivity and figure of merit. Opt Mater (Amst ) 121. https://doi.org/10.1016/j.optmat.2021.111484

  9. Singh MK, Pal S, Verma A, Mishra V (2021) Prajapati YK Sensitivity enhancement using anisotropic black phosphorus and antimonene in bi-metal layer-based surface plasmon resonance biosensor. Superlattices Microstruct 156:106969. https://doi.org/10.1016/j.spmi.2021.106969

    Article  CAS  Google Scholar 

  10. Srivastava R, Prajapati YK, Pal S, Kumar S (2022) Micro-channel plasmon sensor based on a D-shaped photonic crystal fiber for malaria diagnosis with improved performance. IEEE Sens J 22(15):14834–14841. https://doi.org/10.1109/JSEN.2022.3181198

    Article  CAS  Google Scholar 

  11. Sharma AK, Pandey AK, Kaur B (2019) Fluoride fiber-based plasmonic biosensor with two-dimensional material heterostructures: enhancement of overall figure-of-merit via optimization of radiation damping in near infrared region. Materials 12(9):1542. https://doi.org/10.3390/ma12091542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sharma AK, Pandey AK, Kaur B (2019) Simulation study on comprehensive sensing enhancement of BlueP/MoS2- and BlueP/WS2-based fluoride fiber surface plasmon resonance sensors: analysis founded on damping, field, and optical power. Appl Opt 58:4518–4525

    Article  CAS  PubMed  Google Scholar 

  13. Sarid D (1981) Long-range surface-plasma waves on very thin metal films. Phys Rev Lett 47. https://doi.org/10.1103/PhysRevLett.47.1927

  14. Gupta S, Paliwal A, Gupta V, Tomar M (2018) Waveguide coupled surface plasmon resonance based electro optic modulation in SBN thin films. Appl Surf Sci 458:139–144. https://doi.org/10.1016/j.apsusc.2018.07.039

    Article  CAS  Google Scholar 

  15. Chabot V, Miron Y, Grandbois M, Charette PG (2012) Long-range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth. Sens Actuators B Chem 174:94–101. https://doi.org/10.1016/j.snb.2012.08.028

    Article  CAS  Google Scholar 

  16. Jing J-Y, Li S-Y, Wang X-Z, Zhu Q, Meng F-L, Wang Q (2019) A D-type fiber based symmetrical long-range surface plasmon resonance sensor with high quality factor. Measurement 140:395–406. https://doi.org/10.1016/j.measurement.2019.03.078

    Article  Google Scholar 

  17. Verma VK, Kumar R, Pal S, Prajapati YK (2022) Highly sensitive MXene-immobilized long range SPR sensor for biomolecule detection. Opt Mater 133:112977. https://doi.org/10.1016/j.optmat.2022.112977

    Article  CAS  Google Scholar 

  18. Maurya JB, Prajapati YK, Singh V et al (2015) Performance of graphene–MoS2 based surface plasmon resonance sensor using Silicon layer. Opt Quant Electron 47:3599–3611. https://doi.org/10.1007/s11082-015-0233-z

    Article  CAS  Google Scholar 

  19. Pal S, Verma A, Prajapati YK et al (2020) Sensitive detection using heterostructure of black phosphorus, transition metal di-chalcogenides and MXene in SPR sensor. Appl Phys A 126:809. https://doi.org/10.1007/s00339-020-03998-1

    Article  CAS  Google Scholar 

  20. Wu L, Ling Z, Jiang L, Guo J, Dai X, Xiang Y, Fan D (2016) Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor. IEEE Photon J 8(2):1–9. https://doi.org/10.1109/jphot.2016.2533923

    Article  Google Scholar 

  21. Xu Y, Hsieh C-Y, Wu L, Ang L-K (2018) Two-dimensional transition metal dichalcogenides mediated long range surface plasmon resonance biosensors. J Phys D: Appl Phys. https://doi.org/10.1088/1361-6463/aaf0f7

    Article  Google Scholar 

  22. Singh MK, Pal S, Prajapati YK, Saini JP (2020) Sensitivity improvement of surface plasmon resonance sensor on using BlueP/MoS2 heterostructure and antimonene. IEEE Sens Lett 4(7):1-4, Art no. 2000404. https://doi.org/10.1109/LSENS.2020.3005942

  23. Sharma AK, Pandey AK (2018) Blue phosphorene/MoS2 heterostructure based SPR sensor with enhanced sensitivity. IEEE Photon Technol Lett 30(7):595–598. https://doi.org/10.1109/LPT.2018.2803747

    Article  CAS  Google Scholar 

  24. Rahman MM, Rana MM, Rahman MS, Anower MS, Mollah MA, Paul AK (2020) Sensitivity enhancement of SPR biosensors employing heterostructure of PtSe2 and 2D materials. Opt Mater 107:110123. https://doi.org/10.1016/j.optmat.2020.110123

    Article  CAS  Google Scholar 

  25. Maurya JB, Prajapati YK (2020) Experimental demonstration of DNA hybridization using graphene based plasmonic sensor chip. J Lightwave Technol 38:5191–5198

    Article  CAS  Google Scholar 

  26. Yu X, Yu P, Wu D, Singh B, Zeng Q, Lin H, Zhou W, Lin J, Suenaga K, Liu Z, Wang QJ (2018) Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor. Nat Commun 9. https://doi.org/10.1038/s41467-018-03935-0

  27. Peng Q et al (2016) Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures. Sci Rep 6:31994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pal Narendra (2023) Jitendra Bahadur Maurya, Black phosphorus mediated long-range SPR imaging sensor with ultrahigh imaging sensitivity, penetration depth and figure of merit. Optik 287. https://doi.org/10.1016/j.ijleo.2023.171056

    Article  CAS  Google Scholar 

  29. Pal N, Maurya JB, Prajapati YK (2022) Long-range SPR imaging sensor mediated by antimonene for biomolecule sensing with ultrahigh imaging sensitivity and figure of merit. Plasmonics 17:1571–1580. https://doi.org/10.1007/s11468-022-01644-5

    Article  CAS  Google Scholar 

  30. Li L, Huang T, Zhao X, Wu X, Cheng Z (2018) Highly sensitive SPR sensor based on hybrid coupling between plasmon and photonic mode. IEEE Photon Technol Lett 30(15):1364–1367. https://doi.org/10.1109/lpt.2018.2847907

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

N. Pal produced the Figs. 1-8 and drafted the manuscript. J.B. Maurya produced the Figs. 9-10, reviewed and edited the manuscript.

Corresponding author

Correspondence to Jitendra Bahadur Maurya.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethics Approval

This declaration is “not applicable.”

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, N., Maurya, J.B. Comparative Analysis of Different Dielectric Buffer Layer in a Highly Sensitive Long-Range Surface Plasmon Resonance Imaging Sensor Having PtSe2 and Heterostructure of BlueP/MoS2. Plasmonics (2023). https://doi.org/10.1007/s11468-023-02124-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-023-02124-0

Keywords

Navigation