Skip to main content
Log in

Highly Sensitive Surface Plasmon Resonance Refractive Index Sensor Based on D-Shaped Dual‑Core Photonic Crystal Fiber with ITO Film

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this research, we proposed and numerically investigated a D-shaped dual-core photonic crystal fiber (PCF) refractive index (RI) sensor based on surface plasmon resonance (SPR), and a plasma material indium tin oxide (ITO) is deposited on the polished surface of a D-shaped PCF to produce the SPR effect. The proposed PCF sensor incorporates a dual-core structure and innovatively introduces an elliptical air hole, which increases the coupling of the SPR effect, resulting in a notable improvement in sensor performance. This enhancement enables the sensor to efficiently detect variations in the RI of the analyte. Utilizing the finite element method (FEM), we analyzed the influencing characteristics of sensor performance, meticulously investigating and optimizing various structural parameters. In the RI sensing range spanning from 1.18 to 1.33, the designed PCF sensor exhibits an outstanding maximum wavelength sensitivity of 29,300 nm/RIU, along with the highest achievable amplitude sensitivity of 261.01 RIU−1. Upon analyzing the light signal modulated by the sensor, the findings unequivocally demonstrate that the proposed sensor displays outstanding sensitivity to changes in the analyte’s RI via the SPR effect. This responsiveness enables effective and precise real-time detection. The proposed sensor is characterized by exceptional sensing performance, strong economic feasibility, and low manufacturing intricacy. Consequently, the proposed sensor can be used to detect medical oxygen, anesthetics, methane gas, glucose, fluorine-containing organics, etc., and it holds a diverse array of promising applications spanning industrial detection, biochemical analysis, and medical diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Wang D, Li W, Zhang QR, Liang BQ, Peng ZK, Xu J, Zhu C, Li JZ (2021) High-performance tapered fiber surface plasmon resonance sensor based on the graphene/Ag/TiO2 layer. Plasmonics 16:2291–2303. https://doi.org/10.1007/s11468-021-01483-w

    Article  CAS  Google Scholar 

  2. Sun YD, Mu HW, Sun JD, Liu Q, Liu C, Liu W, Zhao J, Lv JW, Sun T, Chu PK (2021) Investigation of a high-sensitivity surface plasmon resonance sensor based on the eccentric core quasi D-shape photonic quasi-crystal fiber. J Mod Opt 68:555–563. https://doi.org/10.1080/09500340.2021.1928779

    Article  CAS  Google Scholar 

  3. Tuaimah AM, Taher HJ, Tahhan SR, Al-Zahrani FA, Ahmed K (2023) Plasmonic D-shaped bimetallic coating refractive index sensor. Plasmonics. https://doi.org/10.1007/s11468-023-01954-2

    Article  Google Scholar 

  4. Khalaf MK, Tahhan SR, Taher HJ, Ibrahim SM, Ahmed K (2023) Au-TiO2 coated dielectric micro-channel based plasmonic refractive index sensor. Opt Quant Electron 55:612. https://doi.org/10.1007/s11082-023-04856-z

    Article  CAS  Google Scholar 

  5. Jabin MA, Ahmed K, Rana MJ, Paul BK, Islam M, Vigneswaran D, Uddin MS (2019) Surface plasmon resonance based titanium coated biosensor for cancer cell detection. IEEE Photon J 11:1–10. https://doi.org/10.1109/JPHOT.2019.2924825

    Article  Google Scholar 

  6. Abdullah H, Ahmed K, Alam MS, Rashed ANZ, Mitu SA, Al-Zahrani FA, Kabir MA (2021) High sensitivity refractive index sensor based on triple layer MgF2-gold-MgF2 coated nano metal films photonic crystal fiber. Optik 241:166950. https://doi.org/10.1016/j.ijleo.2021.166950

    Article  CAS  Google Scholar 

  7. Ahmed K, Amin R, Bui FM, Li C, Mohammadd N, Al-Zahrani FA, Kumar S (2023) Design and analysis of multi-analyte detection based biosensor in the visible to near-infrared (VNIR) region. IEEE Trans Nanobiosci. https://doi.org/10.1109/TNB.2023.3281527

    Article  Google Scholar 

  8. Chowdhury S, Abdulrazak LF, Mitu SA, Ahmed K, Bui FM, Smirani LK, Chen L (2023) A highly sensitive multi-channel SPR-PCF based biosensor with deep learning prediction approach. Alex Eng J 77:189–203. https://doi.org/10.1016/j.aej.2023.06.093

    Article  Google Scholar 

  9. Patel SK, Surve J, Parmar J, Parmar T, Jadeja R, Ahmed K, Bui FM (2023) Terahertz metasurface-based refractive index sensor for amino acid detection: a numerical approach. IEEE Trans Nanobiosci 22:614–621. https://doi.org/10.1109/TNB.2022.3222446

    Article  CAS  Google Scholar 

  10. Ahmed K, Ahmed F, Roy S, Paul BK, Aktar MN, Vigneswaran D, Islam MS (2019) Refractive index-based blood components sensing in terahertz spectrum. IEEE Sens J 19:3368–3375. https://doi.org/10.1109/JSEN.2019.2895166

    Article  CAS  Google Scholar 

  11. Rifat AA, Ahmed K, Asaduzzaman S, Paul BK, Ahmed R (2019) Development of photonic crystal fiber-based gas/chemical sensors. Computational Photonic Sensors. Springer 287–317. https://doi.org/10.1007/978-3-319-76556-3_12

  12. Li KF, Guo Y, Li SG, Yin ZY, Chen Q, Meng XJ, Gao ZG, Bai G (2023) High sensitivity refractive index sensor based on D-shaped photonic crystal fiber coated with graphene-silver films. Plasmonics 18:1093–1101. https://doi.org/10.1007/s11468-023-01827-8

    Article  CAS  Google Scholar 

  13. Zhou X, Li XG, Cheng TL, Li SG, An GW (2018) Graphene enhanced optical fiber SPR sensor for liquid concentration measurement. Opt Fiber Technol 43:62–66. https://doi.org/10.1016/j.yofte.2018.04.007

    Article  CAS  Google Scholar 

  14. Chauhan M, Singh VK (2021) Review on recent experimental SPR/LSPR based fiber optic analyte sensors. Opt Fiber Technol 64:102580. https://doi.org/10.1016/j.yofte.2021.102580

    Article  CAS  Google Scholar 

  15. Kumar V, Raghuwanshi SK, Kumar S (2022) Recent advances in Carbon nanomaterials based SPR sensor for biomolecules and gas Detection—a review. IEEE Sens J 22:15661–15672. https://doi.org/10.1109/JSEN.2022.3191042

    Article  CAS  Google Scholar 

  16. Portosi V, Laneve D, Falconi MC, Prudenzano F (2019) Advances on photonic crystal fiber sensors and applications. Sensors 19:1–19. https://doi.org/10.3390/s19081892

    Article  CAS  Google Scholar 

  17. Ahmed K, Bui FM, Wu FX (2023) PreOBP_ML: machine learning algorithms for prediction of optical biosensor parameters. Micromachines 14:1174. https://doi.org/10.3390/mi14061174

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang TY, Zheng Y, Wang CM, Mu ZM, Liu YJ, Lin J (2018) A review of photonic crystal fiber sensor applications for different physical quantities. Appl Spectrosc Rev 53:486–502. https://doi.org/10.1080/05704928.2017.1376681

    Article  CAS  Google Scholar 

  19. De M, Gangopadhyay TK, Singh VK (2019) Prospects of photonic crystal fiber as physical sensor: an overview. Sensors 19:464. https://doi.org/10.3390/s19030464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chaudhary VS, Kumar D, Pandey BP, Kumar S (2023) Advances in photonic crystal fiber-based sensor for detection of physical and biochemical parameters—a review. IEEE Sens J 23:1012–1023. https://doi.org/10.1109/JSEN.2022.3222969

    Article  CAS  Google Scholar 

  21. Fang HR, Wei CJ, Jiang WJ, Wang D, Li J (2022) Highly efficient symmetrical dual-channel D-type photonic crystal fiber surface plasmon resonance sensor. J Opt Soc Am B 39:1–8. https://doi.org/10.1364/JOSAB.433209

    Article  CAS  Google Scholar 

  22. Hossen MN, Ferdous M, Khalek MA, Chakma S, Paul BK, Ahmed K (2018) Design and analysis of biosensor based on surface plasmon resonance. Sens Bio-Sens Res 21:1–6. https://doi.org/10.1016/j.sbsr.2018.08.003

    Article  Google Scholar 

  23. Li DM, Zhang W, Liu H, Hu JF, Zhou GY (2017) High sensitivity refractive index sensor based on multicoating photonic crystal fiber with surface plasmon resonance at near-infrared wavelength. IEEE Photon J 9:1–8. https://doi.org/10.1109/JPHOT.2017.2687121

    Article  Google Scholar 

  24. Chen X, Xia L, Li C (2018) Surface plasmon resonance sensor based on a novel D-shaped photonic crystal fiber for low refractive index detection. IEEE Photon J 10:1–9. https://doi.org/10.1109/JPHOT.2018.2790424

    Article  Google Scholar 

  25. Chakma S, Khalek MA, Paul BK, Ahmed K, Hasan MR, Bahar AN (2018) Gold-coated photonic crystal fiber biosensor based on surface plasmon resonance: design and analysis. Sens Bio-Sens Res 18:7–12. https://doi.org/10.1016/j.sbsr.2018.02.003

    Article  Google Scholar 

  26. Nayak JK, Jha R (2017) Numerical simulation on the performance analysis of a graphene-coated optical fiber plasmonic sensor at anti-crossing. Appl Opt 56:3510–3517. https://doi.org/10.1364/AO.56.003510

    Article  CAS  PubMed  Google Scholar 

  27. Aydin EB, Sezginturk MK (2017) Indium tin oxide (ITO): a promising material in biosensing technology. TRAC Trends Anal Chem 97:309–315. https://doi.org/10.1016/j.trac.2017.09.021

    Article  CAS  Google Scholar 

  28. Huang TY (2017) Highly sensitive SPR sensor based on D-shaped photonic crystal fiber coated with indium tin oxide at near-infrared wavelength. Plasmonics 12:583–588. https://doi.org/10.1007/s11468-016-0301-7

    Article  CAS  Google Scholar 

  29. Shima RA, Mollah MA, Ali MY (2020) Au-ITO deposited D-shaped photonic crystal fiber polarizer with a micro-opening based on surface plasmon resonance. Optik 224:165489. https://doi.org/10.1016/j.ijleo.2020.165489

    Article  CAS  Google Scholar 

  30. Bryant WA (1977) The fundamentals of chemical vapour deposition. J Mater Sci 12:1285–1306. https://doi.org/10.1007/BF00540843

    Article  CAS  Google Scholar 

  31. George SM (2010) Atomic layer deposition: an overview. Chem Rev 110:111–131. https://doi.org/10.1021/cr900056b

    Article  CAS  PubMed  Google Scholar 

  32. Christen HM, Eres G (2008) Recent advances in pulsed-laser deposition of complex oxides. J Phys Condens Mat 20:264005. https://doi.org/10.1088/0953-8984/20/26/264005

    Article  CAS  Google Scholar 

  33. Tian MJ, Li J, Meng FL (2023) Independent measurement of refractive index and temperature using D-gapped dual-channel structure in a photonic crystal fiber. Opt Quant Electron 55:301. https://doi.org/10.1007/s11082-023-04616-z

    Article  CAS  Google Scholar 

  34. Kaur V, Singh S (2020) Design of D-shaped PCF-SPR sensor with dual coating of ITO and ZnO conducting metal oxide. Optik 220:165135. https://doi.org/10.1016/j.ijleo.2020.165135

    Article  CAS  Google Scholar 

  35. Luo BY, An MD, Hu TQ, Jia HZ (2023) Design of a novel D-shaped SPR sensor with high sensitivity based on PCF for ultra-low refractive index detection. Laser Phys 33:115101. https://doi.org/10.1088/1555-6611/acee5c

    Article  CAS  Google Scholar 

  36. Zhu MJ, Yang L, Lv JW, Liu C, Li Q, Peng C, Li XL, Chu PK (2022) Highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance sensor with gold film. Plasmonics 17:543–550. https://doi.org/10.1007/s11468-021-01543-1

    Article  CAS  Google Scholar 

  37. Rifat AA, Mahdiraji GA, Chow DM, Shee YG, Ahmed R, Adikan FRM (2015) Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core. Sensors 15:11499–11510. https://doi.org/10.3390/s150511499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. An GW, Hao XP, Li SG, Yan X, Zhang XN (2017) D-shaped photonic crystal fiber refractive index sensor based on surface plasmon resonance. Appl Opt 56:6988–6992. https://doi.org/10.1364/AO.56.006988

    Article  CAS  PubMed  Google Scholar 

  39. Melwin G, Senthilnathan K (2020) High sensitive D-shaped photonic crystal fiber sensor with V-groove analyte channel. Optik 213:164779. https://doi.org/10.1016/j.ijleo.2020.164779

    Article  CAS  Google Scholar 

  40. Yang Z, Xia L, Li C, Chen X, Liu DM (2019) A surface plasmon resonance sensor based on concave-shaped photonic crystal fiber for low refractive index detection. Opt Commun 430:195–203. https://doi.org/10.1016/j.optcom.2018.08.049

    Article  CAS  Google Scholar 

  41. Ramani U, Kumar H, Singh BK, Pandey PC (2020) Study of highly sensitivity metal wires assisted photonic crystal fiber based refractive index sensor. Opt Quantum Electron 52:1–13. https://doi.org/10.1007/s11082-020-02658-1

    Article  CAS  Google Scholar 

  42. Pan HG, Pan F, Zhang AL, Cao CB, Xue FJ (2022) Wide refractive index detection range surface plasmon resonance sensor based on D-shaped photonic crystal fiber. Opt Quantum Electron 54:393. https://doi.org/10.21203/rs.3.rs-1126729/v1

  43. Liu C, Wang JW, Wang FM, Su WQ, Yang L, Lv JW, Fu GL, Li XL, Liu Q, Sun T, Chu PK (2020) Surface plasmon resonance (SPR) infrared sensor based on D-shape photonic crystal fibers with ITO coatings. Opt Commun 464:125496. https://doi.org/10.1016/j.optcom.2020.125496

    Article  CAS  Google Scholar 

  44. Pan F, Zhang AL, Pan HG, Cao CB (2022) High sensitivity surface plasmon resonance sensor based on D-shaped high birefringence photonic crystal fibre. J Mod Opt 69:575–582. https://doi.org/10.1080/09500340.2022.2067362

    Article  CAS  Google Scholar 

  45. Liu C, Yang L, Liu Q, Wang FM, Sun ZJ, Sun T, Mu HW, Chu PK (2018) Analysis of a surface plasmon resonance probe based on photonic crystal fibers for low refractive index detection. Plasmonics 13:779–784. https://doi.org/10.1007/s11468-017-0572-7

    Article  CAS  Google Scholar 

  46. Wang JS, Pei L, Wu LY, Wang J, Ruan ZL, Zheng JJ (2020) A polarization-independent SPR sensor based on photonic crystal fiber for low RI detection. Plasmonics 15:327–333. https://doi.org/10.1007/s11468-019-01054-0

    Article  CAS  Google Scholar 

  47. Yan X, Wang Y, Cheng TL, Li SG (2021) Photonic crystal fiber SPR liquid sensor based on elliptical detective channel. Micromachines 12:408. https://doi.org/10.3390/mi12040408

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wang FM, Sun ZJ, Liu C, Sun T, Chu PK (2017) A highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance biosensor with silver-graphene layer. Plasmonics 12:1847–1853. https://doi.org/10.1007/s11468-016-0453-5

    Article  Google Scholar 

  49. Sakib MN, Hossain MB, Al-tabatabaie KF, Mehedi IM, Hasan MT, Hossain MA, Amiri IS (2019) High performance dual core D-shape PCF-SPR sensor modeling employing gold coat. Results Phys 15:102788. https://doi.org/10.1016/j.rinp.2019.102788

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Yihong Fei proposed and designed the structure. Yihong Fei completed the simulation work and further improved the structural design. The first draft of the manuscript was written by Yihong Fei. Biyun Luo, Mengdi An and Hongzhi Jia proposed amendments and discussed. Tianqi Hu and Wen Lin inspected and reviewed the amendments. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hongzhi Jia.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, Y., Luo, B., An, M. et al. Highly Sensitive Surface Plasmon Resonance Refractive Index Sensor Based on D-Shaped Dual‑Core Photonic Crystal Fiber with ITO Film. Plasmonics 19, 1633–1647 (2024). https://doi.org/10.1007/s11468-023-02103-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-02103-5

Keywords

Navigation