Skip to main content

Advertisement

Log in

A Review of Fabrication of DNA Origami Plasmonic Structures for the Development of Surface-Enhanced Raman Scattering (SERS) Platforms

  • REVIEW
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The label-free, non-destructive information provided by Raman spectroscopy regarding chemical composition, molecular structure, and molecular interaction makes it a potent analytical tool. Raman scattering’s low intensity, however, prevents it from being widely used in a variety of sectors. Plasmonic nanoparticles (NPs) on the surface may considerably improve the Raman process, resulting in surface-enhanced Raman scattering (SERS). Due to the capacity to co-assembling many particles in complicated shapes with fine control of stoichiometry, orientation, and gaps between the particles, the creation of plasmonic nanostructures utilizing a bottom-up method using DNA origami has generated considerable scientific interest. We evaluate current developments in the use of DNA origami structures for the creation of SERS-based sensors in this review paper. We go through SERS fundamentals, plasmonic enhancement processes, and several plasmonic nanostructure fabrication techniques. Additionally, we discuss the benefits of DNA origami in the construction of plasmonic NPs and the creation of SERS hotspots for analytical and medicinal uses. We also discuss potential paths for future research and difficulties facing DNA origami-based SERS sensors. This study attempts to provide a thorough grasp of DNA origami’s potential in the creation of SERS-based sensors and its possibilities for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data used in the present study are available from the corresponding author on reasonable request.

References

  1. Zhang X et al (2012) Label-free live-cell imaging of nucleic acids using stimulated Raman scattering microscopy. Chemphyschem 13(4):1054–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zong C et al (2018) Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chem Rev 118(10):4946–4980

    Article  CAS  PubMed  Google Scholar 

  3. Ember KJ et al (2017) Raman spectroscopy and regenerative medicine: a review. NPJ Regen Med 2(1):12

    Article  PubMed  PubMed Central  Google Scholar 

  4. Spiro TG, Gaber BP (1977) Laser Raman scattering as a probe of protein structure. Annu Rev Biochem 46(1):553–570

    Article  CAS  PubMed  Google Scholar 

  5. Taguchi I et al (1987) A Raman scattering study of phonons in RuS2 and RuSe2 single crystals. J Phys C: Solid State Phys 20(26):4241

    Article  CAS  Google Scholar 

  6. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26(2):163–166

    Article  CAS  Google Scholar 

  7. Zohar N, Chuntonov L, Haran G (2014) The simplest plasmonic molecules: metal nanoparticle dimers and trimers. J Photochem Photobiol, C 21:26–39

    Article  CAS  Google Scholar 

  8. He Q-F et al (2023) Surface-enhanced Raman spectroscopy: principles, methods, and applications in energy systems†. Chin J Chem 41(3):355–369

    Article  CAS  Google Scholar 

  9. Karooby E, Granpayeh N (2019) Potential applications of nanoshell bow-tie antennas for biological imaging and hyperthermia therapy. Opt Eng 58(6):065102–065102

    Article  CAS  Google Scholar 

  10. Zhu W et al (2016) Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nat Commun 7(1):1–14

    Article  CAS  Google Scholar 

  11. Esteban R et al (2015) A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations. Faraday Discuss 178:151–183

    Article  CAS  PubMed  Google Scholar 

  12. Salehi K, Kordlu A, Rezapour-Nasrabad R (2020) Prevalence of type 2 diabetes in population over 30 years old (2017–2018). Ethno Med 14(1–2):24–29

    Google Scholar 

  13. Eskandari V, Hadi A (2020) Review of the application and mechanism of surface enhanced Raman spectroscopy (SERS) as biosensor for the study of biological and chemical analyzes. J Comput Appl Mech 51(2):501–509

    Google Scholar 

  14. Rezapour-Nasrabad R (2021) Feasibility of providing Namaste managed care to the elderly with Alzheimer’s disease. Arch Venez de Farmacol y Ter 40(4):455–463

    Google Scholar 

  15. Eskandari V, Hadi A, Sahbafar H (2022) Coating gold nanoparticles to a glass substrate by spin-coat method as a surface-enhanced Raman spectroscopy (SERS) plasmonic sensor to detect molecular vibrations of bisphenol-a (BPA). Adv Nano Res 13(5):417–426

    Google Scholar 

  16. Ganesh S et al (2023) Label-free saliva test for rapid detection of coronavirus using nanosensor-enabled SERS. Bioengineering 10(3):391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Luo Y et al (2023) Active enrichment of nanoparticles for ultra-trace point-of-care COVID-19 detection. Anal Chem 95(12):5316–5322

    Article  CAS  PubMed  Google Scholar 

  18. Eskandari V et al (2022) A review of paper-based substrates as surface-enhanced Raman spectroscopy (SERS) biosensors and microfluidic paper-based SERS platforms. J Comput Appl Mech 53(1):142–156

    Google Scholar 

  19. Vedelago C et al (2023) A multiplexed SERS microassay for accurate detection of SARS-CoV-2 and variants of concern. ACS Sens 8(4):1648–1657

    Article  CAS  PubMed  Google Scholar 

  20. Eskandari V et al (2023) A surface-enhanced Raman scattering (SERS) biosensor fabricated using the electrodeposition method for ultrasensitive detection of amino acid histidine. J Mol Struct 1274

    Article  CAS  Google Scholar 

  21. Dang H et al (2023) Nanoplasmonic assay platforms for reproducible SERS detection of Alzheimer’s disease biomarker. Bull Korean Chem Soc 44(5):441. https://doi.org/10.1002/bkcs.12679

  22. Zhou Y et al (2023) Simple plasma test based on a MoSe2 SERS platform for the specific diagnosis of Alzheimer’s disease. Chem Biomed Imaging 1(2):186–191. https://doi.org/10.1021/cbmi.3c00041

  23. Wang J et al (2023) SERS-based detection of early type 1 diabetes mellitus biomarkers: glutamate decarboxylase antibody and insulin autoantibody. Sens Actuators B Chem 381:133456

    Article  CAS  Google Scholar 

  24. Cheng Y et al (2023) A SERS/fluorescence dual-mode immuno-nanoprobe for investigating two anti-diabetic drugs on EGFR expressions. Microchim Acta 190(4):124

    Article  CAS  Google Scholar 

  25. Mi F et al (2023) A SERS biosensor based on aptamer-based Fe3O4@ SiO2@ Ag magnetic recognition and embedded SERS probes for ultrasensitive simultaneous detection of Staphylococcus aureus and Escherichia coli. Microchem J 190

    Article  CAS  Google Scholar 

  26. Eskandari V et al (2023) Liposomes/nanoliposomes and surfaced-enhanced Raman scattering (SERS): a review. Vibrational Spectroscopy p 103536

  27. Zhang Z et al (2023) Engineering rational SERS nanotags for parallel detection of multiple cancer circulating biomarkers. Chemosensors 11(2):110

    Article  CAS  Google Scholar 

  28. Cheng Z et al (2023) Application of serum SERS technology based on thermally annealed silver nanoparticle composite substrate in breast cancer. Photodiagnosis Photodyn Ther 41

    Article  CAS  PubMed  Google Scholar 

  29. Eskandari V, Sadeghi M, Hadi A (2021) Physical and chemical properties of nano-liposome, application in nano medicine. J Comput Appl Mech 52(4):751–767

    Google Scholar 

  30. Zhao J et al (2023) SERS-based biosensor for detection of f-PSA%: implications for the diagnosis of prostate cancer. Talanta, p 124654

  31. Ngo L et al (2023) Improving SERS biosensor for the analysis of ovarian cancer-derived small extracellular vesicles. Analyst 148:3074–3086

  32. Liu C et al (2023) Toward SERS-based therapeutic drug monitoring in clinical settings: recent developments and trends. TrAC Trends Anal Chem 117094

  33. Eskandari V et al (2023) Surface-enhanced Raman scattering (SERS) filter paper substrates decorated with silver nanoparticles for the detection of molecular vibrations of acyclovir drug. Spectrochim Acta Part A Mol Biomol Spectrosc 298:122762. https://doi.org/10.1016/j.saa.2023.122762. Epub 2023 Apr 21. PMID: 37130482

    Article  CAS  Google Scholar 

  34. Guo Z et al (2023) Detection of heavy metals in food and agricultural products by surface-enhanced Raman spectroscopy. Food Rev Intl 39(3):1440–1461

    Article  CAS  Google Scholar 

  35. Eskandari V, Sahbafar H, Hadi A (2022) A review of surface-enhanced Raman biosensors for studying different biological analytes and chemicals. J Lasers Med Sci 18(4):57–57

    Google Scholar 

  36. Esmati M, Hajari N, Eskandari V (2023) Flexible plasmonic paper substrates as surface-enhanced Raman scattering (SERS) biosensors enable sensitive detection of sunitinib malate drug. Plasmonics. https://doi.org/10.1007/s11468-023-01975-x

  37. Karooby E et al (2023) Identification of low concentrations of flucytosine drug using a surface-enhanced Raman scattering (SERS)-active filter paper substrate. Plasmonics. https://doi.org/10.1007/s11468-023-02042-1

  38. Mehmandoust S et al (2023) Experimental and numerical evaluations of flexible filter paper substrates for sensitive and rapid identification of methyl parathion pesticide via surface-enhanced Raman scattering (SERS). Vib Spectrosc 129

    Article  CAS  Google Scholar 

  39. Shi Q et al (2023) Soft plasmene helical nanostructures. Adv Mater Technol, pp 2201866

  40. Vieu C et al (2000) Electron beam lithography: resolution limits and applications. Appl Surf Sci 164(1):111–117

    Article  CAS  Google Scholar 

  41. Joshi-Imre A, Bauerdick S (2014) Direct-write ion beam lithography. J Nanotechnol 2014:26, Article ID 170415. https://doi.org/10.1155/2014/170415

  42. Sadeghi P et al (2017) Fabrication and characterization of Au dimer antennas on glass pillars with enhanced plasmonic response. Nanophotonics 7(2):497–505

    Article  Google Scholar 

  43. Petti L et al (2016) A plasmonic nanostructure fabricated by electron beam lithography as a sensitive and highly homogeneous SERS substrate for bio-sensing applications. Vib Spectrosc 82:22–30

    Article  CAS  Google Scholar 

  44. Near R et al (2012) Pronounced effects of anisotropy on plasmonic properties of nanorings fabricated by electron beam lithography. Nano Lett 12(4):2158–2164

    Article  CAS  PubMed  Google Scholar 

  45. Kinkhabwala A et al (2009) Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat Photonics 3(11):654–657

    Article  CAS  Google Scholar 

  46. Thiruvengadathan R et al (2013) Nanomaterial processing using self-assembly-bottom-up chemical and biological approaches. Rep Prog Phys 76(6)

    Article  PubMed  Google Scholar 

  47. Tiano AL et al (2010) Solution-based synthetic strategies for one-dimensional metal-containing nanostructures. Chem Commun 46(43):8093–8130

    Article  CAS  Google Scholar 

  48. Yang G et al (2017) Self-assembly of large gold nanoparticles for surface-enhanced Raman spectroscopy. ACS Appl Mater Interfaces 9(15):13457–13470

    Article  CAS  PubMed  Google Scholar 

  49. Wang Y-W et al (2016) Large-scale uniform two-dimensional hexagonal arrays of gold nanoparticles templated from mesoporous silica film for surface-enhanced Raman spectroscopy. J Phys Chem C 120(42):24382–24388

    Article  CAS  Google Scholar 

  50. Acuna G et al (2012) Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science 338(6106):506–510

    Article  CAS  PubMed  Google Scholar 

  51. Rothemund PW (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440(7082):297–302

    Article  CAS  PubMed  Google Scholar 

  52. Tian Y et al (2015) Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames. Nat Nanotechnol 10(7):637–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Seeman NC (1982) Nucleic acid junctions and lattices. J Theor Biol 99(2):237–247

    Article  CAS  PubMed  Google Scholar 

  54. Lang RJ (2007) The science of origami. Phys World 20(2):30

    Article  Google Scholar 

  55. Prinz J et al (2013) DNA origami substrates for highly sensitive surface-enhanced Raman scattering. J Phys Chem Lett 4(23):4140–4145

    Article  CAS  Google Scholar 

  56. Chao J et al (2015) DNA-based plasmonic nanostructures. Mater Today 18(6):326–335

    Article  CAS  Google Scholar 

  57. Tan SJ et al (2011) Building plasmonic nanostructures with DNA. Nat Nanotechnol 6(5):268–276

    Article  CAS  PubMed  Google Scholar 

  58. Lan X, Wang Q (2014) DNA-programmed self-assembly of photonic nanoarchitectures. NPG Asia Mater 6(4):e97–e97

    Article  CAS  Google Scholar 

  59. Sharma J et al (2008) Toward reliable gold nanoparticle patterning on self-assembled DNA nanoscaffold. J Am Chem Soc 130(25):7820–7821

    Article  CAS  PubMed  Google Scholar 

  60. Ding B et al (2010) Gold nanoparticle self-similar chain structure organized by DNA origami. J Am Chem Soc 132(10):3248–3249

    Article  CAS  PubMed  Google Scholar 

  61. Dass M et al (2021) DNA origami-enabled plasmonic sensing. J Phys Chem C 125(11):5969–5981

    Article  CAS  Google Scholar 

  62. Kühler P et al (2014) Plasmonic DNA-origami nanoantennas for surface-enhanced Raman spectroscopy. Nano Lett 14(5):2914–2919

    Article  PubMed  Google Scholar 

  63. Prinz J et al (2016) DNA origami based Au–Ag-core–shell nanoparticle dimers with single-molecule SERS sensitivity. Nanoscale 8(10):5612–5620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Simoncelli S et al (2016) Quantitative single-molecule surface-enhanced Raman scattering by optothermal tuning of DNA origami-assembled plasmonic nanoantennas. ACS Nano 10(11):9809–9815

    Article  CAS  PubMed  Google Scholar 

  65. Heck C et al (2017) Gold nanolenses self-assembled by DNA origami. ACS Photonics 4(5):1123–1130

    Article  CAS  Google Scholar 

  66. Tanwar S, Haldar KK, Sen T (2017) DNA origami directed Au nanostar dimers for single-molecule surface-enhanced Raman scattering. J Am Chem Soc 139(48):17639–17648

    Article  CAS  PubMed  Google Scholar 

  67. Moeinian A et al (2019) Highly localized SERS measurements using single silicon nanowires decorated with DNA origami-based SERS probe. Nano Lett 19(2):1061–1066

    Article  CAS  PubMed  Google Scholar 

  68. Fang w et al (2019) Quantizing single-molecule surface-enhanced Raman scattering with DNA origami metamolecules. Sci Adv 5(9):eaau4506

    Article  PubMed  PubMed Central  Google Scholar 

  69. Yamashita N et al (2020) Surface-enhanced Raman spectroscopy with gold nanoparticle dimers created by sacrificial DNA origami technique. Micro Nano Lett 15(6):384–389

    Article  CAS  Google Scholar 

  70. Chikkaraddy R et al (2021) Dynamics of deterministically positioned single-bond surface-enhanced Raman scattering from DNA origami assembled in plasmonic nanogaps. J Raman Spectrosc 52(2):348–354

    Article  CAS  Google Scholar 

  71. Tapio K et al (2021) A versatile DNA origami-based plasmonic nanoantenna for label-free single-molecule surface-enhanced Raman spectroscopy. ACS Nano 15(4):7065–7077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tanwar S et al (2021) Broadband SERS enhancement by DNA origami assembled bimetallic nanoantennas with label-free single protein sensing. J Phys Chem Lett 12(33):8141–8150

    Article  CAS  PubMed  Google Scholar 

  73. Kogikoski S et al (2021) Raman enhancement of nanoparticle dimers self-assembled using DNA origami nanotriangles. Molecules 26(6):1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kaur V, Sharma M, Sen T (2021) DNA origami-templated bimetallic nanostar assemblies for ultra-sensitive detection of dopamine. Front Chem 9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kabusure KM et al (2022) Optical characterization of DNA origami-shaped silver nanoparticles created through biotemplated lithography. Nanoscale 14(27):9648–9654

    Article  CAS  PubMed  Google Scholar 

  76. Huo B et al (2022) ATP-responsive strand displacement coupling with DNA origami/AuNPs strategy for the determination of microcystin-LR using surface-enhanced Raman spectroscopy. Anal Chem 94(34):11889–11897

    Article  CAS  PubMed  Google Scholar 

  77. Dutta A et al (2022) Molecular states and spin crossover of hemin studied by DNA origami enabled single-molecule surface-enhanced Raman scattering. Nanoscale 14(44):16467–16478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Niu R et al (2021) DNA origami-based nanoprinting for the assembly of plasmonic nanostructures with single-molecule surface-enhanced Raman scattering. Angew Chem 133(21):11801–11807

    Article  Google Scholar 

  79. Chacha M (2021) Surface enhanced Raman scattering of DNA origami-based bowtie shaped silver nanoparticles. Itä-Suomen yliopisto

  80. Hann J et al (2021) DNA origami for biosensor applications, 2021 Smart Systems Integration (SSI), Grenoble, France, pp 1–4. https://doi.org/10.1109/SSI52265.2021.9467014

  81. Zhou C et al (2020) Programming surface-enhanced Raman scattering of DNA origami-templated metamolecules. Nano Lett 20(5):3155–3159

    Article  CAS  PubMed  Google Scholar 

  82. Kaur V et al (2021) DNA-origami-based assembly of Au@ Ag nanostar dimer nanoantennas for label-free sensing of pyocyanin. Chemphyschem 22(2):160–167

    Article  CAS  PubMed  Google Scholar 

  83. Heck C et al (2019) Amorphous carbon generation as a photocatalytic reaction on DNA-assembled gold and silver nanostructures. Molecules 24(12):2324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhao M-Z et al (2018) DNA origami-templated assembly of plasmonic nanostructures with enhanced Raman scattering. Nucl Sci Tech 29(1):6

    Article  Google Scholar 

  85. Zhan P et al (2018) DNA origami directed assembly of gold bowtie nanoantennas for single-molecule surface-enhanced Raman scattering. Angew Chem Int Ed 57(11):2846–2850

    Article  CAS  Google Scholar 

  86. Heck C et al (2018) Single proteins placed within the SERS hot spots of self-assembled silver nanolenses. Angew Chem Int Ed 57:7444. https://doi.org/10.1002/anie.201801748

  87. Yamashita N et al (2017) Formation of gold nanoparticle dimers on silicon by sacrificial DNA origami technique. Micro Nano Lett 12(11):854–859

    Article  CAS  Google Scholar 

  88. Liu B et al (2017) A gold-nanoparticle-based SERS reporter that rolls on DNA origami templates. ChemNanoMat 3(10):760–763

    Article  CAS  Google Scholar 

  89. Prinz J et al (2016) Hybrid structures for surface-enhanced Raman scattering: DNA origami/gold nanoparticle dimer/graphene. Small 12(39):5458–5467

    Article  CAS  PubMed  Google Scholar 

  90. Thacker VV et al (2014) DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering. Nat Commun 5(1):3448

    Article  PubMed  Google Scholar 

  91. Pilo-Pais M et al (2014) Surface-enhanced Raman scattering plasmonic enhancement using DNA origami-based complex metallic nanostructures. Nano Lett 14(4):2099–2104

    Article  CAS  PubMed  Google Scholar 

  92. Wang S et al (2020) DNA origami-enabled biosensors. Sensors (Basel) 20(23):6899. https://doi.org/10.3390/s20236899. PMID: 33287133; PMCID: PMC7731452

  93. Noroozi R et al (2023) 3D and 4D bioprinting technologies: a game changer for the biomedical sector? Ann Biomed Eng 51(8):1683–1712

    Article  PubMed  Google Scholar 

  94. Farasati Far B et al (2023) Combinational system of lipid-based nanocarriers and biodegradable polymers for wound healing: an updated review. J Funct Biomater 14(2):115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Farasati Far B et al (2022) A review on biomedical application of polysaccharide-based hydrogels with a focus on drug delivery systems. Polymers 14(24):5432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Herrmann A, Haag R, Schedler U (2021) Hydrogels and their role in biosensing applications. Adv Healthcare Mater 10(11):2100062

    Article  CAS  Google Scholar 

  97. Farasati Far B et al (2023) An updated review on advances in hydrogel-based nanoparticles for liver cancer treatment. Livers 3(2):161–189

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Saeideh Mehmandoust and Vahid Eskandari contributed to the study conception and design. Data collection and analysis of literature were performed by Saeideh Mehmandoust and Vahid Eskandari. The first draft of the manuscript was written by Saeideh Mehmandoust. Elaheh Karooby revised, evaluated, and edited the final version of the manuscript. Moreover, the whole investigation was supervised by Vahid Eskandari. Finally, all authors read and approved the final manuscript.

Corresponding author

Correspondence to Vahid Eskandari.

Ethics declarations

Ethics Approval

Not applicable.

Competing Interests

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehmandoust, S., Eskandari, V. & Karooby, E. A Review of Fabrication of DNA Origami Plasmonic Structures for the Development of Surface-Enhanced Raman Scattering (SERS) Platforms. Plasmonics 19, 1131–1143 (2024). https://doi.org/10.1007/s11468-023-02064-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-02064-9

Keywords

Navigation