Skip to main content
Log in

Fabrication Strategies of 3D Plasmonic Structures for SERS

  • Review Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Recent advancements in fabricating plasmonic nanostructures have markedly lessened the limitations of conventional optical sensors, in terms of sensitivity, tunability, photostability, and in vivo applicability. The sophisticated design of diverse metallic nanoparticles and formation of two- or threedimensional (3D) assemblies have enhanced the performance of plasmon-based sensing and imaging applications. Especially, the creation of highly localized electromagnetic fields (i.e., hot-spots) in the multidimensional plasmonic structures has enabled ultrasensitive detection of biomolecules at low concentrations via surface-enhanced Raman scattering (SERS). In this review, we summarize representative approaches to obtain 3D plasmonic structures categorized by the fabrication strategies. These include colloidal synthesis of plasmonic nanoparticles with multiple hot-spots and post-integration of the nanoparticles into 3D templates, and self-integration in the course of constructing 3D structures. We also describe notable structural benefits in sensing applications, especially for SERS, that take advantages of such 3D plasmonic nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Table 1

Similar content being viewed by others

References

  1. Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R.R. & Feld, M.S. Ultrasensitive chemical analysis by Raman spectroscopy. Chem. Rev. 99, 2957–2976 (1999).

    CAS  PubMed  Google Scholar 

  2. Darvill, D., Centeno, A. & Xie, F. Plasmonic fluorescence enhancement by metal nanostructures: shaping the future of bionanotechnology. Phys. Chem. Chem. Phys. 15, 15709–15726 (2013).

    CAS  PubMed  Google Scholar 

  3. Tam, F., Goodrich, G.P., Johnson, B.R. & Halas, N.J. Plasmonic enhancement of molecular fluorescence. Nano Lett. 7, 496–501 (2007).

    CAS  PubMed  Google Scholar 

  4. Haynes, C.L., McFarland, A.D. & Duyne, R.P.V. Surface-enhanced Raman spectroscopy. Anal. Chem. 77, 338–346 (2005).

    Google Scholar 

  5. Xu, H., Aizpurua, J., Käll, M. & Apell, P. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys. Rev. E 62, 4318 (2000).

    CAS  Google Scholar 

  6. Xu, H., Bjerneld, E.J., Käll, M. & Börjesson, L. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 83, 4357 (1999).

    CAS  Google Scholar 

  7. Knoll, W. Interfaces and thin films as seen by bound electromagnetic waves. Annu. Rev. Phys. Chem. 49, 569–638 (1998).

    CAS  PubMed  Google Scholar 

  8. Qian, X.M., & Nie, S.M. Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem. Soc. Rev. 37, 912–920 (2018).

    Google Scholar 

  9. Vo-Dinh, T. et al. SERS nanosensors and nanoreporters: golden opportunities in biomedical applications. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 7, 17–33 (2015).

    CAS  Google Scholar 

  10. Halvorson, R.A., & Vikesland, P.J. Surface-enhanced Raman spectroscopy (SERS) for environmental analyses. Environ. Sci. Technol. 44, 7749–7755 (2010).

    CAS  PubMed  Google Scholar 

  11. Li, D.W., Zhai, W.L., Li, Y.T., & Long, Y.T. Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Microchimica Acta 181, 23–43 (2014).

    CAS  Google Scholar 

  12. Yaseen, T., Pu, H., & Sun, D.W. Functionalization techniques for improving SERS substrates and their applications in food safety evaluation: a review of recent research trends. Trends Food Sci. Technol. 72, 162–174 (2018).

    CAS  Google Scholar 

  13. Craig, A.P., Franca, A.S., & Irudayaraj, J. Surfaceenhanced Raman spectroscopy applied to food safety. Annu. Rev. Food Sci. Technol. 4, 369–380 (2013).

    CAS  PubMed  Google Scholar 

  14. McMahon, J.M., Li, S., Ausman, L.K. & Schatz, G.C. Modeling the effect of small gaps in surface-enhanced Raman spectroscopy. J. Phys. Chem. C 116, 1627–1637 (2011).

    Google Scholar 

  15. Wustholz, K.L. et al. Structure-activity relationships in gold nanoparticle dimers and trimers for surfaceenhanced Raman spectroscopy. J. Am. Chem. Soc. 132, 10903–10910 (2010).

    CAS  PubMed  Google Scholar 

  16. Zhu, X. et al. Enhanced light-matter interactions in graphene-covered gold nanovoid arrays. Nano Lett. 13, 4690–4696 (2013).

    CAS  PubMed  Google Scholar 

  17. Lee, B. et al. Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS2 integrated with plasmonic nanoantenna array. Nano Lett. 15, 3646–3653 (2015).

    CAS  PubMed  Google Scholar 

  18. Petrescu, D.S. & Blum, A.S. Viral-based nanomaterials for plasmonic and photonic materials and devices. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. e1508 (2018).

    Google Scholar 

  19. Ye, J., Lagae, L., Maes, G., Borghs, G. & Van Dorpe, P. Symmetry breaking induced optical properties of gold open shell nanostructures. Opt. Express 17, 23765–23771 (2009).

    CAS  PubMed  Google Scholar 

  20. Zhao, S., Roberge, H., Yelon, A. & Veres, T. New application of AAO template: a mold for nanoring and nanocone arrays. J. Am. Chem. Soc. 128, 12352–12353 (2006).

    CAS  PubMed  Google Scholar 

  21. Lu, W., Sun, J. & Jiang, X. Recent advances in electrospinning technology and biomedical applications of electrospun fibers. J. Mater. Chem. B 2, 2369–2380 (2014).

    CAS  PubMed  Google Scholar 

  22. Lee, Y. et al. Facile fabrication of large-scale porous and flexible three-dimensional plasmonic networks. ACS Appl. Mater. Interfaces 10, 28242–28249 (2018).

    CAS  PubMed  Google Scholar 

  23. Choi, I. et al. Spontaneous self-formation of 3D plasmonic optical structures. ACS Nano 10, 7639–7645 (2016).

    CAS  PubMed  Google Scholar 

  24. Brongersma, M.L., Halas, N.J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25 (2015).

    CAS  PubMed  Google Scholar 

  25. Yamamoto, Y.S., Ozaki, Y. & Itoh, T. Recent progress and frontiers in the electromagnetic mechanism of surface-enhanced Raman scattering. J. Photochem. Photobiol., C 21, 81–104 (2014).

    CAS  Google Scholar 

  26. Kerker, M., Wang, D.-S. & Chew, H. Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata. Appl. Opt. 19, 4159–4174 (1980).

    CAS  PubMed  Google Scholar 

  27. Le Ru, E. & Etchegoin, P. Rigorous justification of the |E|4 enhancement factor in surface enhanced Raman spectroscopy. Chem. Phys. Lett. 423, 63–66 (2006).

    CAS  Google Scholar 

  28. McMahon, J.M., Gray, S.K. & Schatz, G.C. Fundamental behavior of electric field enhancements in the gaps between closely spaced nanostructures. Phys. Rev. B 83, 115428 (2011).

    Google Scholar 

  29. Rodal-Cedeira, S. et al. Plasmonic Au@Pd nanorods with boosted refractive index susceptibility and sers efficiency: A multifunctional platform for hydrogen sensing and monitoring of catalytic reactions. Chem. Mater. 28, 9169–9180 (2016).

    CAS  Google Scholar 

  30. Alsaif, M.M. et al. Tunable plasmon resonances in two-dimensional molybdenum oxide nanoflakes. Adv. Mater. 26, 3931–3937 (2014).

    CAS  PubMed  Google Scholar 

  31. Futamata, M. Single molecule sensitivity in SERS: importance of junction of adjacent Ag nanoparticles. Faraday Discuss. 132, 45–61 (2006).

    CAS  PubMed  Google Scholar 

  32. Le Ru, E. & Etchegoin, P. Sub-wavelength localization of hot-spots in SERS. Chem. Phys. Lett. 396, 393–397 (2004).

    CAS  Google Scholar 

  33. Le Ru, E., Etchegoin, P. & Meyer, M. Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection. J. Chem. Phys. 125, 204701 (2006).

    CAS  PubMed  Google Scholar 

  34. Michaels, A.M., Jiang, J. & Brus, L. Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules. J. Phys. Chem. B 104, 11965–11971 (2000).

    CAS  Google Scholar 

  35. Campion, A. & Kambhampati, P. Surface-enhanced Raman scattering. Chem. Soc. Rev. 27, 241–250 (1998).

    CAS  Google Scholar 

  36. Stiles, P.L., Dieringer, J.A., Shah, N.C. & Van Duyne, R.P. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1, 601–626 (2008).

    CAS  Google Scholar 

  37. Banholzer, M.J., Millstone, J.E., Qin, L. & Mirkin, C.A. Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 37, 885–897 (2008).

    CAS  PubMed  Google Scholar 

  38. Cecchini, M.P., Turek, V.A., Paget, J., Kornyshev, A.A. & Edel, J.B. Self-assembled nanoparticle arrays for multiphase trace analyte detection. Nat. Mater. 12, 165 (2013).

    CAS  PubMed  Google Scholar 

  39. Li, W., Camargo, P.H., Lu, X. & Xia, Y. Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering. Nano Lett. 9, 485–490 (2008).

    Google Scholar 

  40. Fang, Y., Seong, N.H. & Dlott, D.D. Measurement of the distribution of site enhancements in surfaceenhanced Raman scattering. Science 321, 388–392 (2008).

    CAS  PubMed  Google Scholar 

  41. Liu, K.K., Tadepalli, S., Tian, L. & Singamaneni, S. Size-dependent surface enhanced Raman scattering activity of plasmonic nanorattles. Chem. Mater. 27, 5261–5270 (2015).

    CAS  Google Scholar 

  42. Ding, S.Y. et al. Nanostructure-based plasmonenhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 1, 16021 (2016).

    CAS  Google Scholar 

  43. Liu, H. et al. Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix. J. Am. Chem. Soc. 136, 5332–5341 (2014).

    CAS  PubMed  Google Scholar 

  44. Jin, C.M., Joo, J.B. & Choi, I. Facile amplification of solution-state surface-enhanced Raman scattering of small molecules using spontaneously formed 3D nanoplasmonic wells. Anal. Chem. 90, 5023–5031 (2018).

    CAS  PubMed  Google Scholar 

  45. Kang, T., Hong, S., Choi, Y. & Lee, L.P. The effect of thermal gradients in SERS spectroscopy. Small 6, 2649–2652 (2010).

    CAS  PubMed  Google Scholar 

  46. Maxwell, D.J., Emory, S.R., & Nie, S. Nanostructured thin-film materials with surface-enhanced optical properties. Chem. Mater. 13, 1082–1088 (2001).

    CAS  Google Scholar 

  47. Yang, L., Li, P., Liu, H., Tang, X. & Liu, J. A dynamic surface enhanced Raman spectroscopy method for ultra-sensitive detection: from the wet state to the dry state. Chem. Soc. Rev. 44, 2837–2848 (2015).

    CAS  PubMed  Google Scholar 

  48. Choi, D., et al. Additional amplifications of SERS via an optofluidic CD-based platform. Lab Chip 9, 239–243 (2009).

    CAS  PubMed  Google Scholar 

  49. Liu, H., Yang, L. & Liu, J. Three-dimensional SERS hot spots for chemical sensing: Towards developing a practical analyzer. TrAC Trends in Anal. Chem. 80, 364–372 (2016).

    CAS  Google Scholar 

  50. Zhang, X., Yonzon, C.R. & Van Duyne, R.P. Nanosphere lithography fabricated plasmonic materials and their applications. J. Mater. Res. 21, 1083–1092 (2006).

    CAS  Google Scholar 

  51. Jiang, R., Li, B., Fang, C. & Wang, J. Metal/ semiconductor hybrid nanostructures for plasmon-enhanced applications. Adv. Mater. 26, 5274–5309 (2014).

    CAS  PubMed  Google Scholar 

  52. Tessier, P.M. et al. Structured metallic films for optical and spectroscopic applications via colloidal crystal templating. Adv. Mater. 13, 396–400 (2001).

    CAS  Google Scholar 

  53. Chen, S.Y. & Lazarides, A.A. Quantitative amplification of Cy5 SERS in ‘warm spots’ created by plasmonic coupling in nanoparticle assemblies of controlled structure. J. Phys. Chem. C 113, 12167–12175 (2009).

    CAS  Google Scholar 

  54. Prodan, E., Radloff, C., Halas, N.J. & Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003).

    CAS  PubMed  Google Scholar 

  55. Van de Broek, B. et al. Shape-controlled synthesis of NIR absorbing branched gold nanoparticles and morphology stabilization with alkanethiols. Nanotechnology 22, 015601 (2010).

    PubMed  Google Scholar 

  56. Barbosa, S. et al. Tuning size and sensing properties in colloidal gold nanostars. Langmuir 26, 14943–14950 (2010).

    CAS  PubMed  Google Scholar 

  57. D’Hollander, A. et al. Development of nanostars as a biocompatible tumor contrast agent: toward in vivo SERS imaging. Int. J. Nanomed. 11, 3703 (2016).

    Google Scholar 

  58. Tran, T.D. & Kim, M.I. Organic-inorganic hybrid nanoflowers as potent materials for biosensing and biocatalytic applications. BioChip J. 12, 268–279 (2018).

    CAS  Google Scholar 

  59. Kumar, P.S., Pastoriza-Santos, I., Rodriguez-Gonzalez, B., De Abajo, F.J.G. & Liz-Marzan, L.M. Highyield synthesis and optical response of gold nanostars. Nanotechnology 19, 015606 (2007).

    Google Scholar 

  60. Nehl, C.L., Liao, H. & Hafner, J.H. Optical properties of star-shaped gold nanoparticles. Nano Lett. 6, 683–688 (2006).

    CAS  PubMed  Google Scholar 

  61. Schütz, M., Steinigeweg, D., Salehi, M., Kömpe, K. & Schlücker, S. Hydrophilically stabilized gold nanostars as SERS labels for tissue imaging of the tumor suppressor p63 by immuno-SERS microscopy. Chem. Commun. 47, 4216–4218 (2011).

    Google Scholar 

  62. Mulvihill, M.J., Ling, X.Y., Henzie, J. & Yang, P. Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS.J. Am. Chem. Soc. 132, 268–274 (2009).

    Google Scholar 

  63. Lee, H.E. et al. Virus templated gold nanocube chain for SERS nanoprobe. Small 10, 3007–3011 (2014).

    CAS  PubMed  Google Scholar 

  64. Johnstone, L.R. et al. Adhesion enhancements and surface-enhanced Raman scattering activity of Ag and Ag@SiO2 nanoparticle decorated ragweed pollen microparticle sensor. ACS Appl. Mater. Interfaces 9, 24804–24811 (2017).

    CAS  PubMed  Google Scholar 

  65. Joseph, V. et al. Surface-enhanced Raman scattering with silver nanostructures generated in situ in a sporopollenin biopolymer matrix. Chem. Commun. 47, 3236–3238 (2011).

    CAS  Google Scholar 

  66. Fontana, J. et al. Virus-templated plasmonic nanoclusters with icosahedral symmetry via directed selfassembly. Small 10, 3058–3063 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Hong, S., Lee, M.Y., Jackson, A.O. & Lee, L.P. Bioinspired optical antennas: gold plant viruses. Light: Sci. Appl. 4, e267 (2015).

    CAS  Google Scholar 

  68. Pham, X.-H. et al. Glucose detection using 4-mercaptophenyl boronic acid-incorporated silver nanoparticles-embedded silica-coated graphene oxide as a SERS substrate. BioChip J. 11, 46–56 (2017).

    CAS  Google Scholar 

  69. Gellner, M. et al. 3D self-assembled plasmonic superstructures of gold nanospheres: Synthesis and characterization at the single-particle level. Small 7, 3445–3451 (2011).

    CAS  PubMed  Google Scholar 

  70. Pal, S., Sharma, J., Yan, H. & Liu, Y. Stable silver nanoparticle–DNA conjugates for directed self-assembly of core-satellite silver-gold nanoclusters. Chem. Commun., 6059–6061 (2009).

    Google Scholar 

  71. Sebba, D.S. & Lazarides, A.A. Robust detection of plasmon coupling in core-satellite nanoassemblies linked by DNA.J. Phys. Chem. C 112, 18331–18339 (2008).

    CAS  Google Scholar 

  72. Choi, I. et al. Core-satellites assembly of silver nanoparticles on a single gold nanoparticle via metal ionmediated complex. J. Am. Chem. Soc. 134, 12083–12090 (2012).

    CAS  PubMed  Google Scholar 

  73. Weng, Z. et al. Self-assembly of core-satellite gold nanoparticles for colorimetric detection of copper ions. Anal. Chim. Acta 803, 128–134 (2013).

    CAS  PubMed  Google Scholar 

  74. Hu, Y., Noelck, S.J. & Drezek, R.A. Symmetry breaking in gold-silica-gold multilayer nanoshells. ACS Nano 4, 1521–1528 (2010).

    CAS  PubMed  Google Scholar 

  75. Lu, Y., Liu, G.L., Kim, J., Mejia, Y.X. & Lee, L.P. Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. Nano Lett. 5, 119–124 (2005).

    CAS  PubMed  Google Scholar 

  76. Jeong, E. et al. Three-dimensional reduced-symmetry of colloidal plasmonic nanoparticles. Nano Lett. 12, 2436–2440 (2012).

    CAS  PubMed  Google Scholar 

  77. Shin, Y. et al. Two-dimensional hyper-branched gold nanoparticles synthesized on a two-dimensional oil/water interface. Sci. Rep. 4, 6119 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang, X. et al. A three-dimensional surface-enhanced Raman scattering substrate: Au nanoparticle supramolecular self-assembly in anodic aluminum oxide template. J. Raman Spectrosc. 43, 459–463 (2012).

    CAS  Google Scholar 

  79. Fan, J. et al. Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties. Angew. Chem. Int. Ed. 42, 3146–3150 (2003).

    CAS  Google Scholar 

  80. Lehman, S.E. & Larsen, S.C. Zeolite and mesoporous silica nanomaterials: greener syntheses, environmental applications and biological toxicity. Environ. Sci.: Nano 1, 200–213 (2014).

    CAS  Google Scholar 

  81. Jin, X. et al. A novel concept for self-reporting materials: stress sensitive photoluminescence in ZnO tetrapod filled elastomers. Adv. Mater. 25, 1342–1347 (2013).

    CAS  PubMed  Google Scholar 

  82. Mishra, Y.K. et al. Direct growth of freestanding ZnO tetrapod networks for multifunctional applications in photocatalysis, UV photodetection, and gas sensing. ACS Appl. Mater. Interfaces 7, 14303–14316 (2015).

    CAS  PubMed  Google Scholar 

  83. Kim, M. & Kim, G. 3D multi-layered fibrous cellulose structure using an electrohydrodynamic process for tissue engineering. J. Colloid Interface Sci. 457, 180–187 (2015).

    CAS  PubMed  Google Scholar 

  84. Chen, K. et al. Highly ordered Ag/Cu hybrid nanostructure arrays for ultrasensitive surface-enhanced Raman spectroscopy. Adv. Mater. Interfaces 3, 1600115 (2016).

    Google Scholar 

  85. Zhang, X. et al. Hierarchical porous plasmonic metamaterials for reproducible ultrasensitive surface-enhanced Raman spectroscopy. Adv. Mater. 27, 1090–1096 (2015).

    CAS  PubMed  Google Scholar 

  86. Zhu, C. et al. ZnO-nanotaper array sacrificial templated synthesis of noble-metal building-block assembled nanotube arrays as 3D SERS-substrates. Nano Res. 8, 957–966 (2015).

    CAS  Google Scholar 

  87. Chen, B. et al. Green synthesis of large-scale highly ordered core@shell nanoporous Au@Ag nanorod arrays as sensitive and reproducible 3D SERS substrates. ACS Appl. Mater. Interfaces 6, 15667–15675 (2014).

    CAS  PubMed  Google Scholar 

  88. Sun, X.Y., Xu, F.Q., Li, Z.M. & Zhang, W.H. Cyclic voltammetry for the fabrication of high dense silver nanowire arrays with the assistance of AAO template. Mater. Chem. Phys. 90, 69–72 (2005).

    CAS  Google Scholar 

  89. Lee, J.H. et al. Enhanced solar-cell efficiency in bulk-heterojunction polymer systems obtained by nanoimprinting with commercially available AAO membrane filters. Small 5, 2139–2143 (2009).

    CAS  PubMed  Google Scholar 

  90. Choi, D., Choi, Y., Hong, S., Kang, T. & Lee, L.P. Self-organized hexagonal-nanopore SERS array. Small 6, 1741–1744 (2010).

    CAS  PubMed  Google Scholar 

  91. Choi, Y., Choi, D. & Lee, L.P. Metal-insulatormetal optical nanoantenna with equivalent-circuit analysis. Adv. Mater. 22, 1754–1758 (2010).

    CAS  PubMed  Google Scholar 

  92. Chung, A.J., Huh, Y.S. & Erickson, D. Large area flexible SERS active substrates using engineered nanostructures. Nanoscale 3, 2903–2908 (2011).

    CAS  PubMed  Google Scholar 

  93. Hong, S., Kang, T., Choi, D., Choi, Y. & Lee, L.P. Self-assembled three-dimensional nanocrown array. ACS Nano 6, 5803–5808 (2012).

    CAS  PubMed  Google Scholar 

  94. Zhou, L. et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2, e1501227 (2016).

    PubMed  PubMed Central  Google Scholar 

  95. Park, S.G. et al. 3D hybrid plasmonic nanomaterials for highly efficient optical absorbers and sensors. Adv. Mater. 27, 4290–4295 (2015).

    CAS  PubMed  Google Scholar 

  96. Lee, M., Mun, C., Kim, D.H., Chang, S.C. & Park, S.G. Analyte-concentrating 3D hybrid plasmonic nanostructures for use in highly sensitive chemical sensors. RSC Adv. 6, 92120–92126 (2016).

    CAS  Google Scholar 

  97. Deng, Y., Wei, J., Sun, Z. & Zhao, D. Large-pore ordered mesoporous materials templated from non-Pluronic amphiphilic block copolymers. Chem. Soc. Rev. 42, 4054–4070 (2013).

    CAS  PubMed  Google Scholar 

  98. Verma, P., Kuwahara, Y., Mori, K. & Yamashita, H. Pd/Ag and Pd/Au bimetallic nanocatalysts on mesoporous silica for plasmon-mediated enhanced catalytic activity under visible light irradiation. J. Mater. Chem. A 4, 10142–10150 (2016).

    CAS  Google Scholar 

  99. Horiuchi, Y., Shimada, M., Kamegawa, T., Mori, K. & Yamashita, H. Size-controlled synthesis of silver nanoparticles on Ti-containing mesoporous silica thin film and photoluminescence enhancement of rhodamine 6G dyes by surface plasmon resonance. J. Mater. Chem. 19, 6745–6749 (2009).

    CAS  Google Scholar 

  100. Tian, C. et al. An ordered mesoporous Ag superstructure synthesized via a template strategy for surface-enhanced Raman spectroscopy. Nanoscale 7, 12318–12324 (2015).

    CAS  PubMed  Google Scholar 

  101. Weiler, M. et al. Bottom-up fabrication of hybrid plasmonic sensors: gold-capped hydrogel microspheres embedded in periodic metal hole arrays. ACS Appl. Mater. Interfaces 8, 26392–26399 (2016).

    CAS  PubMed  Google Scholar 

  102. Li, Z. et al. Ag Nanoparticle-grafted PAN-nanohump array films with 3D high-density hot spots as flexible and reliable SERS substrates. Small 11, 5452–5459 (2015).

    CAS  PubMed  Google Scholar 

  103. Yao, J. et al. Functional nanostructured plasmonic materials. Adv. Mater. 22, 1102–1110 (2010).

    CAS  PubMed  Google Scholar 

  104. Lee, Y. et al. Virus-templated Au and Au-Pt coreshell nanowires and their electrocatalytic activities for fuel cell applications. Energy Environ. Sci. 5, 8328–8334 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Chen, P.Y. et al. Versatile three-dimensional virusbased template for dye-sensitized solar cells with improved electron transport and light harvesting. ACS Nano 7, 6563–6574 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Courchesne, N.M.D. et al. Assembly of a bacteriophage-based template for the organization of materials into nanoporous networks. Adv. Mater. 26, 3398–3404 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Chen, J.Y., Chiu, Y.C., Shih, C.C., Wu, W.C. & Chen, W.C. Electrospun nanofibers with dual plasmonic-enhanced luminescent solar concentrator effects for high-performance organic photovoltaic cells. J. Mater. Chem. A 3, 15039–15048 (2015).

    CAS  Google Scholar 

  108. Penchev, H., Paneva, D., Manolova, N. & Rashkov, I. Electrospun hybrid nanofibers based on chitosan or N-carboxyethylchitosan and silver nanoparticles. Macromol. Biosci. 9, 884–894 (2009).

    CAS  PubMed  Google Scholar 

  109. Jung, J.H. et al. High-performance UV-Vis-NIR phototransistors based on single-crystalline organic semiconductor-gold hybrid nanomaterials. Adv. Funct. Mater. 27, 1604528 (2017).

    Google Scholar 

  110. Zhang, C.L., Lv, K.P., Cong, H.P. & Yu, S.H. Controlled assemblies of gold nanorods in PVA nanofiber matrix as flexible free-standing SERS substrates by electrospinning. Small 8, 648–653 (2012).

    CAS  Google Scholar 

  111. Li, Y. et al. Electrospun flexible poly (bisphenol A carbonate) nanofibers decorated with Ag nanoparticles as effective 3D SERS substrates for trace TNT detection. Analyst 142, 4756–4764 (2017).

    CAS  PubMed  Google Scholar 

  112. Yang, T., Yang, H., Zhen, S.J. & Huang, C.Z. Hydrogen-bond-mediated in situ fabrication of AgNPs/Agar/PAN electrospun nanofibers as reproducible SERS substrates. ACS Appl. Mater. Interfaces 7, 1586–1594 (2015).

    CAS  PubMed  Google Scholar 

  113. Wu, W.Y., Bian, Z.P., Wang, W. & Zhu, J.J. PDMS gold nanoparticle composite film-based silver enhanced colorimetric detection of cardiac troponin I. Sens. Actuators, B147, 298–303 (2010).

    Google Scholar 

  114. Leem, J., Wang, M.C., Kang, P. & Nam, S. Mechanically self-assembled, three-dimensional graphene-gold hybrid nanostructures for advanced nanoplasmonic sensors. Nano Lett. 15, 7684–7690 (2015).

    CAS  PubMed  Google Scholar 

  115. Kwon, J.A. et al. Tunable plasmonic cavity for label-free detection of small molecules. ACS Appl. Mater. Interfaces 10, 13226–13235 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2017R1A2B4003267). This research was also supported by Basic Research Laboratory (BRL) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2018R1A4A1025985).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inhee Choi.

Conflict of Interests

Conflict of Interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Choi, I. Fabrication Strategies of 3D Plasmonic Structures for SERS. BioChip J 13, 30–42 (2019). https://doi.org/10.1007/s13206-019-3105-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-019-3105-y

Keywords

Navigation